МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГЛАВНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ, НАУКИ И КАДРОВОЙ ПОЛИТИКИ

Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ОРДЕНОВ ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ТРУДОВОГО КРАСНОГО ЗНАМЕНИ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

С. В. Курзенков

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

ПРАКТИКУМ

Для студентов, обучающихся по специальностям 6-05-0812-01 Техническое обеспечение производства сельскохозяйственной продукции, 6-05-0812-03 Технический сервис в агропромышленном комплексе

Горки БГСХА 2023

СОДЕРЖАНИЕ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Занятие 1. Основные понятия теории вероятностей. Формулы комбинаторики

Занятие 2. Вероятность события и ее свойства. Статистическая вероятнос случайного события

Занятие 3. Теоремы сложения и умножения вероятностей

Занятие 4. Формула полной вероятности. Формулы Байеса

Занятие 5. Повторные независимые испытания

Занятие 6. Дискретная случайная величина, ее способы задания и числовь характеристики

Занятие 7. Непрерывная случайная величина, ее способы задания и числовь характеристики

Занятие 8. Нормальный закон распределения СВ ТИПОВОЕ ЗАДАНИЕ К ЧЕТВЕРТОМУ ТЕМАТИЧЕСКОМУ МОДУЛЮ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ» ПРИЛОЖЕНИЯ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Занятие 1. Основные понятия теории вероятностей. Формулы комбинаторики

Основные формулы и понятия, необходимые при решении задач

Исходными понятиями в теории вероятностей являются понятия испытания и события. Под испытанием (опытом) будем понимать всякое действие, результат которого фиксируется. Результат испытания будем называть событием. События, как правило, обозначаются большими латинскими буквами $A,\ B,\ \dots$ Результатом одинаковых испытаний могут быть разные события.

Например, подбрасываем монету— это испытание. Результатом этого испытания могут быть два события: A_1 —выпал «герб», A_2 — выпала «решка». Конечно, монета может стать и на ребро, но это событие, если и появляется, то настолько редко, что его можно считать практически невозможным событием.

Проведем испытание: на k делянках одинаковой площади с близкими почвенными и климатическими характеристиками посеян один и тот же сорт некоторой культуры. Результатом этого испытания будет совокупность событий $A_1, A_2, ..., A_k$, представляющих собой урожайность с каждой делянки. Причем значения $A_1, A_2, ..., A_k$ будут различными. Подобных примеров можно привести сколь угодно много.

Рассматриваемые события можно разделить на достоверные, невозможные и случайные.

Событие, которое в данном испытании обязательно происходит, называется достоверным событием.

Событие, которое в данном испытании не может произойти, называется невозможным событием.

Событие, которое в данном испытании может произойти, может и не произойти, называется *случайным событием*.

Например, в испытании с монетой событие A — монета испарится — невозможное, событие B — монета упадет на землю — достоверное, событие A_1 — выпадет «герб» и A_2 — выпадет «решка» — случайные.

Случайные события в свою очередь делятся на: несовместные, равновозможные и единственно возможные события.

События называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

События называются равновозможными, если в результате испытания ни одно из событий не является более возможным, чем другие.

События называются единственно возможными, если в результате испытания хотя бы одного из них есть достоверное событие.

Совокупность единственно возможных и несовместных событий испытания образуют полную группу событий.

Часто при решении задач по теории вероятностей бывает удобно пользоваться понятиями перестановки, размещения, сочетания.

Перестановками из п элементов называются всевозможные упорядоченные множества, содержащие все данные п элементов.

Например, перестановкам из трех элементов a, b, c будут следующие множества: $\{a, b, c\}, \{a, c, b\}, \{c, a, b\}, \{c, b, a\}, \{b, c, a\}, \{b, a, c\}.$

Ясно, что перестановки отличаются друг от друга только порядком следования в них элементов. Число всевозможных перестановок из n элементов обозначают P_n . Легко показать, что

$$P_n = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1 = n! (! - факториал).$$

Размещениями из n элементов по m элементов (m < n) называются всевозможные упорядоченные множества по m элементов, взятые из данных n элементов и отличающиеся друг от друга либо хотя бы одним элементом, либо порядком следования элементов g этих множествах.

Например, размещениями из трех элементов a, b, c по два элемента будут следующие множества: $\{a, b\}, \{b, c\}, \{a, c\}, \{c, a\}, \{b, c\}, \{c, d\}$.

Число всех размещений из n элементов по m элементов обозначают A_n^m и вычисляют по формуле

$$A_n^m = \frac{n!}{(n-m)!}, A_n^m = n \cdot (n-1) \cdot ... \cdot (n-(m-1)).$$

Очевидно, что при m=n размещения совпадают с перестановками $A_n^m=P_n.$

Сочетаниями из п элементов по т элементов называются всевозможные множества по т элементов, взятые из данных п элементов и отличающиеся друг от друга хотя бы одним элементом.

Сочетаниями из трех элементов a, b, c по два элемента будут множества: $\{a,b\},\{a,c\},\{b,c\}.$

Число всех сочетаний из n элементов по m обозначают C_n^m . Очевидно, что

$$C_n^m = \frac{A_n^m}{P_m} = \frac{n!}{(n-m)! \cdot m!} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-(m-1))}{m!}.$$

Иногда удобно пользоваться следующими свойствами сочетаний:

1)
$$C_n^n = C_n^0 = 1$$
, 2) $C_n^m = C_n^{n-m}$, 3) $C_n^0 + C_n^1 + ... + C_n^n = 2^n$.

Разницу между перестановками, размещениями и сочетаниями рассмотрим на следующих примерах.

1. Пять студентов приобрели 5 билетов в театр. Сколькими способами студенты могут разместиться на приобретенных местах?

Очевидно, число способов размещения студентов в театре равно числу перестановок из 5 элементов: $P_5 = 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$.

2. Сколько трехзначных чисел можно составить из 5 цифр: 1; 2; 3; 4; 5, если каждая цифра входит в число по одному разу?

Число трехзначных чисел из 5 цифр равно числу размещений из 5 элементов по три: $A_5^3 = \frac{5!}{(5-3)!} = 5 \cdot 4 \cdot 3 = 60$.

3. Пять студентов приобрели три билета в театр. Сколькими способами можно выбрать делегацию студентов в театр?

Число всевозможных способов выбора делегации в театр из пяти человек на три места равно числу сочетаний из пяти элементов по три:

$$C_5^3 = \frac{A_5^3}{P_3} = \frac{60}{3!} = 10$$
.

Задания к аудиторному занятию 1

- 1. Рассыльному поручено разнести 6 телеграмм по шести различным адресам. Сколько различных маршрутов он может выбрать?
- 2. Студенты данного курса изучают 7 учебных предметов. В расписание занятий можно поставить 3 различных предмета в день. Сколько существует способов составления расписания на этот день?
- 3. Каждая из букв П, О, Л, А, К, Н написана на одной из шести карточек, которые перемешиваются и наудачу раскладываются в ряд. Сколькими способами можно их разложить?
- 4. Сколько различных делегаций по четыре человека можно составить из группы в 15 человек?
- 5. В хозяйстве 4 бригады. Сколькими способами можно распределить по бригадам 4 бригадиров?
- 6. Студент пришел на экзамен, зная лишь 35 из 40 вопросов программы. Сколько существует способов задать студенту 3 вопроса, которых он не знает?
- 7. Из 20 человек нужно выделить 7 для полевых работ. Сколькими способами это можно сделать?

- 8. Сколько различных четырехзначных чисел можно написать при помощи цифр 1, 2, 3, 4, если каждая цифра входит в изображение числа только один раз?
- 9. В спортклубе 10 лыжников и 8 лыжниц. Сколькими способами можно сформировать команду из 4 лыжников и 3 лыжниц?
- 10. Сколькими способами можно составить трехцветный полосатый флаг, если имеется материал 7 различных цветов?
- 11. Сколькими способами можно расположить на книжной полке 8 различных книг?
- 12. Дано 20 точек, никакие три из них не лежат на одной прямой. Сколько прямых можно провести, соединяя точки попарно?
- 13. Студенту необходимо сдать 4 экзамена на протяжении 16 дней. Сколькими способами можно составить расписание сессии?
- 14.В партии имеется 8 изделий обычного качества и 4 высшего. Сколькими способами из партии можно выбрать 6 изделий так, чтобы 3 из них были высшего качества?
- 15. Для производственной практики студентов предоставлено 10 мест в Минскую область, 5- в Гомельскую, 8- в Витебскую, 9- в Могилевскую, 7- в Брестскую и 11- в Гродненскую. Сколько имеется случаев, что три определенных студента попадут на практику в одну область?
- 16. На окружности отмечено 8 различных точек. Сколько различных треугольников с вершинами в данных точках можно построить?
- 17. Сколькими способами можно разместить 6 больных в шестиместной палате?
- 18. Встретились 10 выпускников и обменялись рукопожатиями. Сколько было сделано всего рукопожатий?
- 19. Агрохимик проверяет 6 видов минеральных удобрений. Ему нужно провести несколько опытов по изучению совместного влияния любой тройки удобрений. Для каждого опыта берется участок 0,25 га. На какой площади проводится все исследование?
- 20. Сколькими способами можно распределить первые три премии на конкурсе, в котором принимает участие 23 человека?

Домашнее задание к занятию 1

- 1. Сколькими способами студент может выбрать в библиотеке три книги из пяти ему предложенных?
- 2.В профком избрано 9 человек. Из них надо выбрать председателя, заместителя и секретаря. Сколькими способами это можно сделать?

- 3. На кафедре 8 преподавателей. Сколькими способами можно составить расписание консультаций на 8 дней, если каждый преподаватель дает консультацию один раз?
- 4. В коробке находятся 15 семян ржи и 10 семян пшеницы. Наудачу берут 2 зерна. Сколько существует способов взять: а) только семена ржи; б) только семена пшеницы; в) одно зерно ржи, одно пшеницы?
- 5. Сколько словарей надо издать, чтобы можно было непосредственно выполнять переводы с любого из пяти языков русского, английского, французского, немецкого, испанского на любой другой из этих пяти языков?
- 6. 9 студентов решили обменяться фотографиями друг с другом. Сколько фотографий надо было для этого напечатать?
- 7. Из цифр 1, 2, 3, 4, 5 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди них таких чисел, которые начинаются цифрой 4?

Занятие 2. Вероятность события и ее свойства. Статистическая вероятность случайного события

Основные формулы и понятия, необходимые при решении задач

События, которые являются несовместными и единственно возможными, называются «элементарными исходами» в рассматриваемом испытании.

Вероятностью события A называется отношение числа элементарных исходов, благоприятствующих появлению события A, к общему числу всевозможных элементарных исходов испытания:

$$P(A) = \frac{k}{n},$$

где k – число исходов, благоприятствующих появлению события A;

n — число всевозможных элементарных исходов испытания, в результате которых событие A наступит или не наступит.

Это определение называется классическим определением вероятности.

Из определения вероятности следует, что:

- 1) вероятность достоверного события равна 1;
- 2) вероятность невозможного события равна 0;
- 3) вероятность случайного события находится в интервале (0; 1).

Пример 1. Пусть на машинном дворе стоят 17 грузовых машин, семь из которых имеют грузоподъемность 1,5 т, шесть –3 т и четыре –

5т. За некоторым грузом отправляются две наудачу взятые машины. Какова вероятность того, что отправленные машины заберут весь груз, если его 6,5 т?

Решение. Введем событие A – отправленные машины заберут весь груз и найдем число всевозможных исходов испытания n и число исходов k, благоприятствующих событию A. Очевидно, число способов, которыми можно отправить две машины из имеющихся 17, равно C_{17}^2 , значит $n = C_{17}^2 = 136$.

Но не каждая пара может забрать 6,5 т груза. Груз будет весь взят, если будут отправлены: или одна полуторатонная и одна пятитонная машины (таких способов $7 \cdot 4 = 28$); или одна трехтонная и одна пятитонная машины (таких способов $6 \cdot 4 = 24$); или две пятитонные машины (таких способов $C^2 = 6$). Итак, k = 28 + 24 + 6 = 58.

Следовательно,
$$P(A) = \frac{58}{136} = \frac{29}{68}$$
.

Проведем серию из n одинаковых испытаний, в каждом из которых событие A может появиться, может не появиться, и допустим, что событие A появилось в k испытаниях из проведенных n.

Частотой или статистической вероятностью p^* случайного события A называется отношение числа испытаний, в которых случайное событие A появилось, к общему числу проведенных испытаний, m. e.

$$P^* = \frac{k}{n}$$
.

Экспериментально установлено, что с ростом числа испытаний, проводимых в одинаковых условиях, частота появления события будет сколь угодно мало отличаться от некоторого постоянного числа p, которое естественно принять за объективную меру возможности появления этого события, т. е. за его вероятность.

Вероятность случайного события A обозначает P(A). Таким образом,

$$P(A) = p = \lim_{n \to \infty} p^* = \lim_{n \to \infty} \frac{k}{n}.$$

Задания к аудиторному занятию 2

1. Определить вероятность того, что во взятом наудачу трехзначном числе все цифры окажутся одинаковыми.

- 2. Из тщательно перемешанных 28 косточек домино наудачу берется одна. Какова вероятность того, что сумма очков на ней будет не менее левяти?
- 3. В урне четыре белых и пять черных шаров. Наугад вынимают два шара. Найти вероятности событий: а) оба шара белые; б) оба шара черные; в) один белый.
- 4. Из букв разрезной азбуки составлено слово «бухгалтер». Перемешаем карточки, затем, вытаскивая их наудачу, кладем в порядке вытаскивания три из них. Какова вероятность того, что при этом получится слово «луг»?
- 5. В студенческой группе 12 дружинников, среди них 5 девушек. Путем жеребьевки должны быть избраны 4 человека на дежурство. Чему равна вероятность того, что среди них окажутся все юноши?
- 6. Бросаются две игральные кости. Какова вероятность того, что сумма выпавших очков: а) не больше пяти; б) не меньше 9?
- 7. В ящике 30 яблок. Из них 5 поражены болезнью в скрытой форме. Наугад берут 3 яблока. Вычислить вероятности событий:
- а) 3 яблока поражены болезнью; б) только одно яблоко поражено болезнью.
- 8. В группе из 30 студентов на контрольной работе получили: оценку «отлично» 8 студентов, оценку «хорошо» 10 студентов, оценку «удовлетворительно» 9 студентов, оценку «неудовлетворительно» 3 студента. Какова вероятность того, что три студента, вызванные к доске, справились с контрольной работой?
- 9. В хозяйстве имеется 6 гусеничных и 4 колесных трактора. Для выполнения некоторой работы произвольно выбираются два трактора. Найти вероятность того, что это будут: а) гусеничные тракторы; б) колесные тракторы; в) один гусеничный, один колесный трактор.
- 10. Из разрезной азбуки, в которой имеется 33 карточки с различными буквами алфавита, вынимаются 5 карточек. Какова вероятность того, что 5 букв, расположенные в порядке появления, составят слово «рынок»?
- 11. В мастерскую для ремонта поступило 10 механических часов. Известно, что 6 из них нуждаются в общей чистке механизма. Мастер берет первые попавшиеся двое часов. Найти вероятность того, что взятые часы не нуждается в общей чистке механизма.
- 12. В хозяйстве 5 участков земли, которые необходимо занять под 5 культур. Какова вероятность того, что произвольное закрепление культур за участками совпадает с запланированным?

- 13. На тепловой электростанции 14 сменных инженеров, из них три женщины. В смену занято три человека. Найти вероятность того, что в случайно выбранную смену окажутся: а) все мужчины; б) все женщины.
- 14. На восьми одинаковых карточках написаны соответственно числа: 2, 4, 6, 7, 8, 11, 12, 13. Карточки перемешиваются, а затем наугад берутся две из них. Найти вероятность того, что дробь, образованная из двух взятых чисел, будет сократимой.
- 15. В партии, состоящей из 10 изделий, 4 бракованных. Для контроля берутся 3 изделия. Найти вероятность того, что: а) оба они бракованные; б) среди них одно бракованное.
- 16. На экзамене студенту предлагается билет, состоящий из 3 вопросов. Из 60 вопросов программы студент знает 50. Какова вероятность того, что взятый студентом билет будет состоять: а) из известных ему вопросов; б) из невыученных вопросов.
- 17. Среди 10 студентов, сидящих в первом ряду, трое не подготовлены к занятиям. Найти вероятность того, что среди 7 опрошенных студентов двое не готовы к занятиям.
- 18. Библиотечка состоит из 10 различных книг, причем пять книг стоят по 4 тыс. руб. каждая, три книги по 1 тыс. руб. и две книги по 3 тыс. руб. Найти вероятность того, что взятые наудачу две книги стоят 5 тыс. руб.
- 19. Для производственной практики на 30 студентов предоставлено 15 мест в Могилевскую область, 8 в Гомельскую и 7 в Витебскую. Какова вероятность того, что два определенных студента попадут в одну область?
- 20. На десяти карточках напечатаны цифры от 1 до 9. Найти вероятность того, что три наудачу взятые и поставленные в ряд карточки составят число 197.

Домашнее задание к занятию 2

- 1. Брошены две игральные кости. Какова вероятность того, что цифра 6 появится хотя бы на одной грани?
- 2. Из букв разрезной азбуки составлено слово «бухгалтер». Перемешаем карточки, затем, вытаскивая их наудачу, кладем в порядке вытаскивания три из них. Какова вероятность того, что при этом получится слово «луг»?
- 3. В студенческой группе 12 дружинников, среди них 5 девушек. Путем жеребьевки должны быть избраны 4 человека на дежурство. Чему равна вероятность того, что среди них окажутся все юноши?

- 4. Преподаватель вызвал через старосту на обязательную консультацию трех студентов из шести отстающих. Староста забыл фамилии вызванных студентов и послал наудачу трех отстающих студентов. Какова вероятность, что посланы вызванные студенты?
- 5. В группе из 8 спортсменов шесть мастеров спорта. Найти вероятность того, что из двух случайным образом отобранных спортсменов хотя бы один мастер спорта.
- 6. Из восьми книг две художественные. Найти вероятность того, что среди взятых наугад четырех книг, хотя бы одна художественная.
- 7. В магазине из 100 пар зимних сапог одного фасона 10 коричневого цвета, а остальные черного. Произвольно отбирают 5 пар сапог. Найти вероятность того, что все выбранные сапоги черного цвета.

Занятие 3. Теоремы сложения и умножения вероятностей

Основные формулы и понятия, необходимые при решении задач

Суммой A + B двух событий A и B называют событие, состоящее в появлении события A, или события B, или обоих этих событий.

Т. е. событие A + B наступает тогда и только тогда, когда наступает хотя бы одно из событий A, B.

Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий.

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из двух несовместных событий A или B равна сумме вероятностей этих событий:

$$P(A+B) = P(A) + P(B) .$$

Теорема справедлива и для нескольких попарно несовместных событий:

$$P(A_1 + A_2 + ... A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$
.

Сумма вероятностей событий, образующих полную группу, равна елинице:

$$P(A_1) + P(A_2) + ...P(A_n) = 1,$$

где $A_1, A_2, ..., A_n$ образуют полную группу событий.

Противоположными называют два единственно возможных, несовместных события, образующих полную группу. Эти события обозначают A и \overline{A} . Сумма вероятностей противоположных событий равна единице

$$P(A) + P(\overline{A}) = 1$$
.

Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q, тогда p+q=1.

Пример 2. В куче картофеля 20 % клубней, пораженных болезнью. Найти вероятность того, что клубень, взятый случайным образом из этой кучи, не поражен болезнью.

Решение. Введем элементарные события. Событие A – взятый клубень поражен болезнью, тогда противоположное событие \overline{A} – клубень не поражен болезнью.

Имеем
$$P(A) = p = 0,2$$
. Тогда найдем $P(\overline{A}) = q = 1 - p = 1 - 0,2 = 0,8$.

Произведением двух событий A и B называют событие AB, состоящее в совместном появлении этих событий.

Два события называют *независимыми*, если вероятность появления одного из них не зависит от того, произошло другое или нет.

Теорема умножения вероятностей независимых событий.

Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

$$P(B) = P(A) \cdot P(B)$$
.

Формула совмещения n независимых в совокупности событий имеет вил

$$P(A_1 A_2 ... A_n) = P(A_1) \cdot P(A_2) ... P(A_n)$$
.

Пример 3. В поле работают 3 комбайна. Вероятность того, что в течение смены первый комбайн не потребует ремонта, равна 0.9, второй -0.6, третий -0.7. Найти вероятность того, что в течение смены не потребует ремонта: 1) два комбайна; 2) хотя бы один комбайн.

Решение. Введем события: A_i — в течение смены i-й комбайн не потребует ремонта, \overline{A}_i — в течение смены i-й комбайн потребует ремонта, где $i=\overline{1,3}$.

Тогда
$$P(A_1) = 0.9$$
; $P(A_2) = 0.6$; $P(A_3) = 0.7$; $P(\overline{A}_1) = 1 - 0.9 = 0.1$; $P(\overline{A}_2) = 1 - 0.6 = 0.4$; $P(\overline{A}_3) = 1 - 0.7 = 0.3$.

1. Обозначим событие B — в течение смены два комбайна не потребуют ремонта. Тогда событие B можно представить в виде

$$B = A_1 A_2 \overline{A}_3 + A_1 \overline{A}_2 A_3 + \overline{A}_1 A_2 A_3.$$

Написанные слагаемые представляют собой несовместные события, поэтому по теореме сложения вероятностей несовместных событий имеем: $P(B) = P(A_1A_2\overline{A_3}) + PA_1\overline{A_2}A_3) + P(\overline{A_1}A_2A_3)$.

Поскольку события $A_1, A_2, A_3, \overline{A_1}, \overline{A_2}, \overline{A_3}$ независимые, то применяя теорему умножения вероятностей независимых событий, имеем:

$$P(B) = P(A_1)P(A_2)P(\overline{A_3}) + P(A_1)P(\overline{A_2})P(A_3) + P(\overline{A_1})P(A_2)P(A_3) =$$

$$= 0.7 \cdot 0.6 \cdot 0.3 + 0.9 \cdot 0.4 \cdot 0.7 + 0.1 \cdot 0.6 \cdot 0.7 = 0.456.$$

2. Обозначим событие C – в течение смены хотя бы один комбайн не потребует ремонта.

Если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий.

Вероятность появления хотя бы одного из независимых в совокупности событий $A_1, A_2, ..., A_n$ равна разности между единицей и произведением вероятностей противоположных событий $\overline{A_1}, \overline{A_2}, ..., \overline{A_n}$

$$P(C) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot \dots \cdot P(\overline{A_n}).$$

Следовательно,

$$P(C) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) \cdot 1 - 0.1 \cdot 0.4 \cdot 0.3 = 0.988$$
.

Пусть событие A и B зависимые. Это значит, что вероятность одного из событий зависит от появления или непоявления другого.

Условной вероятностью $P_A(B)$ называют вероятность события B, вычисленную в предположении, что событие A произошло.

Теорема умножения вероятностей зависимых событий.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

$$P(AB) = P(A) \cdot P_A(B).$$

Пример 4. Многолетними наблюдениями установлено, что в некоторой местности в сентябре 10 дней бывают дождливыми. Определить вероятность того, что первые 3 дня не будут дождливыми.

Решение. Обозначим события: $A_1 - 1$ сентября не будет дождливым днем; $A_2 - 2$ сентября не будет дождливым днем; $A_3 - 3$ сентября не будет дождливым днем; B — первые 3 дня не будут дождливыми. Тогда

$$B=A_1\cdot A_2\cdot A_3.$$

События A_1, A_2, A_3 являются зависимыми, так как проходит один день и изменяется общее количество недождливых дней.

По теореме умножения вероятностей зависимых событий имеем:

$$P(B) = P(A_1) \cdot P_{A_1}(A_2) \cdot P_{A_1 A_2}(A_3) = \frac{20}{30} \cdot \frac{19}{29} \cdot \frac{18}{28} = \frac{57}{203} \approx 0,28$$
.

Если появление события A не исключает появления события B, то вероятность суммы этих событий равна сумме вероятностей этих событий без вероятности их совместного появления:

$$P(A+B) = P(A) + P(B) - P(AB).$$

Задания к аудиторному занятию 3

- 1. В двух отсеках зернохранилища находится посевной материал (пшеница). Семена первого отсека имеют всхожесть 80%, второго 85%. Отбирается по одному зерну из каждого отсека. Найти вероятность того, что: а) оба зерна дадут всходы; б) одно зерно взойдет; в) хотя бы одно зерно взойдет.
- 2. В урне 10 красных, 7 синих и 3 белых шара. Найти вероятность того, что два наугад извлеченных шара одного цвета.
- 3. В читальном зале имеется 6 учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что хотя бы один из них в переплете.
- 4. Заводом послана автомашина за различными материалами на четыре базы. Вероятность наличия нужного материала на первой базе равна 0.9, на второй -0.95, на третьей -0.8 и на четвертой -0.6. Найти вероятность того, что нужного материала не окажется: а) на двух базах; б) хотя бы на одной базе.
- 5. В ящике 30 яблок. Из них 3 поражены болезнью в скрытой форме. Из ящика извлекают 2 плода. Вычислить вероятность того, что поражены болезнью: а) два плода; б) один плод; в) хотя бы один плод.
- 6. Один стрелок дает 80% попаданий в цель, а другой 70%. Найти вероятность поражения цели, если оба стрелка делают по одному выстрелу. Цель считается пораженной при попадании в нее хотя бы одной из двух пуль.
- 7. Экзаменационный билет содержит три вопроса. Вероятность того, что студент ответит на первый, второй вопросы, равна 0,9, на третий 0,8. Найти вероятность того, что студент сдаст экзамен, если для этого необходимо ответить хотя на два вопроса билета.
- 8. Три спортсмена должны выполнить норму мастера спорта. Вероятность того, что первый спортсмен выполнит норму, равна 0.9, второй -0.8, третий -0.7. Найти вероятность того, что норма мастера спорта будет выполнена: а) двумя спортсменами; б) хотя бы двумя спортсменами.

- 9. Радист трижды вызывает корреспондента. Вероятность того, что будет принят первый вызов, равна 0,2, второй вызов -0,3, третий вызов -0,4. По условиям приема, события, состоящие в том, что данный вызов будет, независимы. Найти вероятность того, что: 1) будет принят только один вызов; 2) корреспондент вообще услышит вызов.
- 10. Завод изготовляет изделия, каждое из которых должно подвергаться четырем видам испытаний. Первое испытание изделие проходит благополучно с вероятностью 0,9, второе 0,95, третье 0,8 и четвертое 0,85. Найти вероятность того, что изделие пройдет благополучно не менее двух испытаний.
- 11. На некотором предприятии 96% изделий признаются пригодными. Из каждой сотни годных изделий в среднем 75 оказываются первого сорта. Найти вероятность того, что изделие, изготовленное на этом предприятии, окажется первого сорта.
- 12. Деталь проходит три операции обработки. Вероятность того, что она окажется бракованной после первой операции, равна 0,02, после второй -0,03, после третьей -0,15. Найти вероятность того, что деталь будет: а) небракованной после трех операций; б) бракованной после трех операций, предполагая, что появление брака на отдельных операциях независимые события.
- 13. В ящике 10 красных и 6 синих пуговиц. Вынимаются наудачу 3 пуговицы. Какова вероятность того, что пуговицы будут одноцветными?
- 14. В поле работают 4 комбайна. Вероятность того, что в течение смены не будет поломки в первом комбайне, равна 0.9, во втором -0.6, в третьем -0.7, в четвертом -0.8. Найти вероятность того, что в течение смены поломка произойдет: 1) только в одном комбайне; 2) хотя бы в одном комбайне.
- 15. Достаточным условием сдачи студентом коллоквиума является ответ на один из двух вопросов, предлагаемых преподавателем. Студент не знает ответов на восемь вопросов из тех сорока, которые могут быть предложены. Какова вероятность сдачи коллоквиума?
- 16. В партии из 10 деталей 8 стандартных. Какова вероятность того, что среди наудачу извлеченных двух деталей есть хотя бы одна стандартная?
- 17. Многолетними наблюдениями установлено, что в данном районе в сентябре 10 дней бывают дождливыми. Совхоз должен в течение первых пяти дней сентября выполнить определенную работу. Определить вероятность того, что ни один из этих дней не будет дождливым.
- 18. Процесс обработки рыбы состоит из трех последовательных операций, на каждой из которых вероятность получения бракованной

продукции равна 0,02. Определить вероятность: 1) получения бракованной продукции в результате обработки рыбы; 2) неполучения бракованной продукции.

- 19. Вероятность установления в данной местности устойчивого снежного покрова с октября равна 0,1. Определить вероятность того, что в ближайшие три года в этой местности устойчивый снежный покров с октября установится: а) один раз; б) хотя бы один раз.
- 20. На переэкзаменовку пришли 7 студентов агрофака, 9 зоофака, 6 гидрофака и 4 студента мехфака. Какова вероятность того, что 3 первых студента, взявшие билеты, окажутся студентами мехфака?

Домашнее задание к занятию 3

- 1. В коробке имеется 30 косынок, из них 17 светлых, остальные темные. Продавец наудачу извлекает одну за другой две косынки. Какова вероятность того, что: а) одна из косынок оказалась темной, б) обе косынки светлые?
- 2. При одном цикле обзора трех радиолокационных станций, следящих за космическим кораблем, вероятности его обнаружения соответственно равны: 0,7; 0,8; 0,9. Найти вероятность обнаружения корабля при одном цикле: а) тремя станциями; б) не менее чем двумя станциями; в) хотя бы одной станцией.
- 3. При некоторых определенных условиях вероятность сбить самолет противника из первого зенитного орудия равна 0,4, из второго 0,5. Сделано по одному выстрелу. Найти вероятность того, что: а) самолет уничтожен двумя снарядами; б) самолет поражен хотя бы одним снарядом; в) ни один снаряд не попал в цель.
- 4. Вероятность того, что студент сдаст первый экзамен, равна 0.9, второй -0.9, третий -0.8. Вычислить вероятность того, что студент сдаст: а) все экзамены; б) хотя бы 2 экзамена.
- 5. В телестудии три телевизионные камеры. Вероятности того, что в данный момент камера включена, соответственно равны: 0,9; 0,8; 0,7. Найти вероятность того, что в данный момент включены: а) две камеры; б) не более одной камеры; в) хотя бы одна камера.
- 6. На железобетонном заводе изготовляют панели, 90% из которых высшего сорта. Какова вероятность того, что из трех наугад выбранных панелей высшего сорта будут: а) три панели; б) не более одной панели?

Занятие 4. Формула полной вероятности. Формулы Байеса

Основные формулы и понятия, необходимые при решении задач

Формула полной вероятности. Пусть H_1, H_2, \ldots, H_n — совокупность единственно возможных и попарно несовместных событий некоторого испытания, т. е. образуют полную группу событий, а случайное событие A наступает только с одним из этих событий и, следовательно, представимо в виде $A = H_1A + H_2A + \ldots + H_nA$. Тогда вероятность события A определяется по формуле

$$P(A) = P(H_1A + H_2A + ... + H_nA) =$$

$$= P(H_1) \cdot P_{H_1}(A) + P(H_2(A) + \dots + P(H_n) \cdot P_{H_1}(A) = \sum_{i=1}^n P(H_i) \cdot P_{H_i}(A).$$

Эта формула называется формулой полной вероятности. События $H_1, H_2, ..., H_n$ называются гипотезами.

Формула Байеса. Если известно, что в результате испытания наступило некоторое событие A, то вероятность того, что событие произошло с гипотезой H_i , определяется по формулам Байеса:

$$P_A(H_i) = \frac{P(H_i) \cdot P_{H_i}(A)}{P(A)}.$$

Здесь P(A) определяется по вышенаписанной формуле.

Пример 5. На откорм поставлено 100 бычков, из которых 30 — породы a, 25 — породы b и 45 — породы c. Вероятность того, что бычок породы а даст суточный привес более 500 г, равна 0,7, для пород b и с она равна 0,6 и 0,5 соответственно. Для контрольного взвешивания наудачу взят один бычок. Какова вероятность того, что его привес будет более 500 г?

Решение. Введем события: H_1 – взят бычок породы a; H_2 – взят бычок породы b; H_3 – взят бычок породы c.

События H_1 , H_2 , H_3 — попарно несовместные, так как взят только один бычок, и единственно возможные, так как пород, отличных от a, b, c, во взятой совокупности бычков нет. Интересующее нас событие — привес взятого бычка более $500 \, \Gamma$ — обозначим через A. Тогда

$$A = H_1 A + H_2 A + H_3 A,$$

$$P(A) = P(H_1) \cdot P_{H_1}(A) + P(H_2) \cdot P_{H_2}(A) + P(H_3) \cdot P_{H_3}(A),$$

$$P(H_1) = \frac{30}{100} = 0.30, \ P(H_2) = \frac{25}{100} = 0.25, \ P(H_3) = 0.45.$$

Вероятности $P_{H_1}(A)$, $P_{H_2}(A)$, $P_{H_3}(A)$ даны в условии задачи.

Остается вычислить искомую вероятность:

$$P(A) = 0.30 \cdot 0.7 + 0.25 \cdot 0.6 + 0.45 \cdot 0.5 = 0.585$$

Пример 6. На откорме стоят те же бычки. Для контроля взвешен один наудачу взятый бычок. Какова вероятность, что этот бычок: породы a; породы b; породы c, если его привес более 500 г?

Решение. Здесь нужно найти $P_A(H_1)$, $P_A(H_2)$, $P_A(H_3)$. Воспользуемся формулами Байеса, причем P(A) мы нашли выше.

$$P_A(H_1) = \frac{P(H_1) \cdot P_{H_1}(A)}{P(A)} = \frac{0.3 \cdot 0.77}{0.585} = 0.36,$$

Аналогично
$$P_{\scriptscriptstyle A}(H_{\scriptscriptstyle 2}) = \frac{0,25\cdot 0,6}{0,585} = 0,26, \ P_{\scriptscriptstyle A}(H_{\scriptscriptstyle 3}) = \frac{0,45\cdot 0,5}{0,585} = 0,38.$$

Задания к аудиторному занятию 4

- 1. В трех корзинах находится картофель. В первой 10% поврежденных клубней, во второй -15%, в третьей -10%. Из наудачу выбранной корзины берут один клубень. Какова вероятность того, что клубень не поврежден?
- 2. Для участия в студенческих спортивных соревнованиях выделено из первой группы 5 студентов, из второй и третьей соответственно 6 и 10 студентов. Вероятности выполнить норму мастера спорта соответственно равны: для студентов первой группы 0,3, второй 0,4, третьей —0,2. Наугад взятый студент выполнил норму мастера спорта. Найти вероятность того, что он учится во второй группе.
- 3. В дисплейном классе имеется 10 персональных компьютеров первого типа и 15 второго типа. Вероятность того, что за время работы на компьютере первого типа не произойдет сбоя, равна 0,9, а на компьютере второго типа 0,7. Найти вероятность того, что на случайно выбранном компьютере за время работы не произойдет сбоя.
- 4. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго –0,5, для третьего 0,8. Найти вероятность того, что выстрел произведен вторым стрелком.
- 5. На наблюдательной станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,8, второго 0,9, третьего 0,95 и четвертого 0,85. Цель обнаружена наугад включенным локатором. Найти вероятность того, что цель обнаружена вторым локатором.
- 6. Сборщик получил 3 коробки деталей, изготовленных заводом № 1 и 2 коробки деталей, изготовленных заводом № 2. Вероятность того, что деталь завода № 1 стандартная, равна 0.7, а завода № 2 -0.9. Сборщик

наудачу извлекает деталь из наудачу взятой коробки. Найти вероятность того, что извлечена нестандартная деталь.

- 7. Электролампы изготавливаются на трех заводах. Первый завод производит 45% общего количества электроламп, второй -40 %, третий 15%. Продукция первого завода содержит 70 % стандартных ламп, второго -80 %, третьего -81%. В магазины поступает продукция всех трех заводов. Купленная в магазине электролампа оказалась стандартной. Найти вероятность того, что она изготовлена на третьем заводе.
- 8. В телевизионном ателье имеется 4 кинескопа. Вероятности того, что кинескоп выдержит гарантийный срок службы, соответственно равны 0,8; 0,85; 0,9; 0,95. Взятый наудачу кинескоп выдержал гарантийный срок. Что вероятнее, был взят второй или четвертый кинескоп?
- 9. В двух корзинах находятся яблоки. В первой 20 шт, из них 5 поврежденных, во второй 30 шт, из них 6 поврежденных. Из наудачу выбранной корзины взято одно яблоко, которое оказалось неповрежденным. Найти вероятность того, что яблоко взято из первой корзины.
- 10. Азотное удобрение поступает на склад хозяйства из пункта 1 и пункта 2, причем из 1-го пункта в 2 раза больше, чем из 2-го. Вероятность того, что удобрение первого пункта удовлетворяет стандарту, равна 0,9, второго 0,7. Взятое для пробы на складе хозяйства удобрение удовлетворяет стандарту. Найти вероятность того, что удобрение, взятое для пробы, поступило из пункта 2.
- 11. При передаче сообщения сигналами "точка" и "тире" эти сигналы встречаются в отношении 5:3. Статистические свойства помех таковы, что искажаются в среднем 2/5 сообщений "точка" и 1/3 сообщений "тире". Найти вероятность того, что произвольный из принятых сигналов не искажен.
- 12. Партия состоит из вентиляторов рижского и московского завода. В партии 70% вентиляторов московского завода, для которых вероятность безотказной работы за время t равна 0,95, рижского -0,92. Прибор испытывался в течение времени t и работал безотказно. Найти вероятность того, что это вентилятор рижского завода.
- 13. Имеются два одинаковых ящика с шарами. В первом ящике 2 белых и 1 черный шар, во втором 1 белый и 4 черных шара. Наудачу выбирают ящик и вынимают из него шар. Какова вероятность того, что вынутый шар окажется белым?
- 14. В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника 0,9, для велосипедиста 0,8 и для бегуна 0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит квалификационную норму.

- 15. Имеются электролампочки четырех партий, количество которых находится в отношении 3: 4: 1: 2. Вероятности того, что взятая лампочка может гореть положенное число часов для этих партий соответственно равны: 0,22; 0,15; 0,46; 0,38. Найти вероятность того, что взятая лампочка сможет гореть положенное число часов.
- 16. Имеются три урны. В первой находятся 5 белых и 3 четных шара, во второй -4 белых и 4 черных, в третьей -8 белых шаров. Наугад выбирается одна урна и из нее наугад извлекается шар. Какова вероятность того, что он окажется черным?
- 17. Качество изготовленных деталей проверяется двумя контролерами, из которых первый проверяет 60~%, второй -40~% деталей. Вероятность считать деталь качественной для первого контролера равна 0.94, а для второго -0.98. Готовая деталь признана качественной. Найти вероятность того, что эту деталь проверил первый контролер.
- 18. В лаборатории имеется 6 измерительных приборов I типа и 4— II типа. Вероятность того, что во время опыта прибор I типа не выйдет из строя, равна 0,95, для прибора II типа эта вероятность равна 0,8. Найти вероятность того, что наудачу взятый измерительный прибор не выйдет из строя до окончания опыта.
- 19.~B первом ящике содержится 20 деталей, из них 15 стандартных, во втором -30 деталей, из них 24 стандартных, в третьем -10 деталей, из них 6 стандартных. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика стандартная.
- 20. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка -0.8, для второго -0.4. После стрельбы в мишень обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку.

Домашнее задание к занятию 4

- 1. На распределительной базе находятся электролампочки, произведенные двумя заводами. Среди них 70% изготовлены первым заводом и 30% вторым. Известно, что из каждых 100 лампочек, произведенных первым заводом, 90 удовлетворяют стандарту, а из 100 лампочек, произведенных вторым заводом, стандарту удовлетворяют 80. Определить вероятность того, что взятая наудачу с базы лампочка будет удовлетворять требованиям стандарта.
- 2. На сборку поступило 3000 деталей, изготовленных на первом станке и 2000 на втором. Первый станок дает 0.2%, а второй -0.3%

брака. Взятая деталь оказалась бракованной. Найти вероятность того, что она изготовлена на первом станке.

- 3. В канцелярии работают 4 секретарши, которые отправляют 40, 10, 30, и 20% исходящих бумаг. Вероятность неверной адресации бумаг секретаршами равна 0,01; 0,04; 0,06 и 0,01 соответственно. Найти вероятность того, что документ, неверно адресованный, отправлен третьей секретаршей.
- 4. На двух станках обрабатываются однотипные детали. Вероятность брака для первого станка составляет 0,03, а для второго 0,02. Обработанные детали складываются в одном месте, причем первый станок обрабатывает вдвое больше деталей, чем второй. Найти вероятность того, что взятая наудачу деталь не будет бракованной.
- 5. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0.075, а на втором -0.09. Производительность второго автомата в два раза больше, чем первого. Найти вероятность того, что наугад взятая с конвейера деталь нестандартная.
- 6. При проверке качества зерен пшеницы было установлено, что все зерна могут быть разделены на 4 группы. К зернам первой группы принадлежит 96%, ко второй -2%, к третьей -1% и к четвертой 1% всех зерен. Вероятность того, что из зерна вырастет колос, содержащий не менее 50 зерен, для семян первой группы равна 0,5, для второй группы -0,2, для третьей -0,18 и для четвертой -0,02. Определить вероятность того, что из взятого наудачу зерна вырастет колос, содержащий не менее 50 зерен.

Занятие 5. Повторные независимые испытания

Основные формулы и понятия, необходимые при решении задач

Пусть производится n независимых испытаний, в каждом из которых вероятность появления одного и того же события A постоянна и равна p. Такие испытания называются последовательностью независимых испытаний.

Формула Бернулли. Вероятность $P_n(m)$ того, что из n испытаний событие A наступит m раз, вычисляется по формуле Бернулли:

$$P_n(m) = C_n^m p^m q^{n-m} = \frac{n!}{m!(n-m)!} p^m q^{n-m},$$

где C_{n}^{m} – число сочетаний из n элементов по m;

p — вероятность появления одного и того же события A в каждом из n испытаний;

q = 1 - p – вероятность непоявления события A;

m – число появления события A, $0 \le m \le n$;

 $P_{n}(m)$ — вероятность того, что из п испытаний событие A наступит m раз.

Пример 7. Предположим, что в случае распространения некоторой эпидемии корова породы a заболеет с вероятностью 0,3. Найти вероятность того, что из десяти коров этой породы заболеют не более четырех, если указанная эпидемия распространяется.

Решение. Для решения задачи представим интересующее нас событие A (заболеют не более четырех коров) в виде суммы несовместных событий $A_0, A_1, A_2, A_3, A_4(A_i -$ заболеет ровно i коров из десяти, $i = \overline{0,4}$). Тогда $A = A_0 + A_1 + A_3 + A_4$, а вероятность этого события можно найти по формуле

$$P(A) = P(A_0 + A_1 + A_2 + A_3 + A_4) = P(A_0 + P(A_1) + P(A_2) + P(A_3) + P(A_4).$$

Вероятности $P(A_i) = P_{10}(i)$ определяются по формуле Бернулли. Окончательно записываем

$$P(A) = C_{10}^{0} \cdot 0.3^{0} \cdot 0.7^{10} + C_{10}^{1} \cdot 0.3 \cdot 0.7^{9} + C_{10}^{2} \cdot 0.3^{2} \cdot 0.7^{8} + C_{10}^{2} \cdot 0.3^{3} \cdot 0.7^{7} + C_{10}^{4} \cdot 0.3^{4} \cdot 0.7^{6} = 0.850.$$

Вычисления рекомендуем проводить с использованием микрокалькулятора.

Если число испытаний n велико, использование формулы Бернулли затруднительно. В этих случаях ее заменяют асимптотическими приближениями, рассматриваемыми ниже.

Формула Пуассона. Если число испытаний п велико (n > 100), а вероятность p появления случайного события A в единичном испытании мала (p < 0,1), то вероятность того, что событие A появится m раз в n независимых испытаниях определяется по формуле Пуассона:

$$P_n(m) \approx \frac{\lambda^m}{m!} e^{-\lambda},$$

где $\lambda = np$ называют средним числом появления события в n независимых испытаниях.

Формулы Муавра – **Лапласа.** Если число независимых испытаний велико, а вероятность p появления случайного события A в единичном испытании близка к 0.5, то для определения вероятности появления

события A m раз в n испытаниях целесообразно пользоваться локальной формулой Муавра-Лапласа:

$$P_{_{\!n}}(m) \approx \frac{1}{\sqrt{npq}} \cdot \varphi(x),$$
 где $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}};$ $x = \frac{m-np}{\sqrt{npq}}.$

Значения функции $\varphi(x)$ для положительных значений ее аргумента x даны в приложениях к любому учебному пособию (в данном методическом пособии см. прил. 1). При отрицательных значениях x используется та же таблица, так как функция $\varphi(x)$ – четная ($\varphi(-x) = \varphi(x)$).

Если нужно вычислить вероятность появления события A от k_1 до k_2 раз, следует использовать интегральную формулу Муавра-Лапласа:

$$P_n(k_1 \leq m \leq k_2) pprox \Phi(x_2) - \Phi(x_1),$$
 где $\Phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt;$ $x_1 = \frac{k_1 - np}{\sqrt{npq}}, \; x_2 = \frac{k_2 - np}{\sqrt{npq}} \; .$

Значения функции $\Phi(x)$ также следует искать в приложениях к учебным пособиям (здесь это прил. 2), учитывая нечетность функции $(\Phi(-x) = -\Phi(x))$

Пример 8. Некоторое хозяйство на зимний период поставило 1000 овец. Известно, что падеж овец за зимний период составляет 2 %. Найти вероятность того, что за зимний период погибнет: а) ровно 15 овец; б) от 10 до 30 овец.

Решение.

а) воспользуемся формулой Пуассона при $\lambda = 1000 \cdot 0,02 = 20$:

$$P_{1000}(15) \approx \frac{20^{15}}{15!} \cdot e^{-20} = 0,052.$$

Можно было бы воспользоваться формулой Муавра – Лапласа:

$$P_{1000}(15) \approx \frac{1}{\sqrt{1000 \cdot 0,02 \cdot 0,98}} \cdot \varphi \left(\frac{15 - 1000 \cdot 0,02}{\sqrt{1000 \cdot 0,02 \cdot 0,098}} \right) = 0,048.$$

Разность полученных результатов объясняется тем, что использовались формулы приближенного вычисления вероятностей;

б) здесь будем использовать интегральную формулу Муавра – Лапласа:

$$\begin{split} P_{1000}(10 \leq m \leq 30) \approx \Phi \Bigg(\frac{30 - 1000 \cdot 0,02}{\sqrt{1000 \cdot 0,02 \cdot 0,98}} \Bigg) - \Phi \Bigg(\frac{10 - 1000 \cdot 0,02}{\sqrt{1000 \cdot 0,02 \cdot 0,98}} \Bigg) = \\ = \Phi(2,26) - \Phi(-2,26) = 2\Phi(2,26) = 0,9762 \; . \end{split}$$

Задания к аудиторному занятию 5

- 1. Всхожесть семян ржи составляет 90%. Чему равна вероятность того, что из 7 посеянных семян взойдут: а) не менее пяти; б) хотя бы одно.
- 2. Среди заготовок, изготавливаемых рабочим, в среднем 4 % не удовлетворяют требованиям стандарта. Найти вероятность того, что среди 6 заготовок, взятых для контроля, не удовлетворяют требованиям стандарта: а) не менее четырех; б) не более пяти.
- 3. Вероятность успешной сдачи студентом каждого из пяти экзаменов оценивается в 70%. Найти вероятность успешной сдачи: а) не менее двух экзаменов; б) хотя бы одного экзамена.
- 4. В телеателье имеется 7 телевизоров. 60% из них включены в данный момент. Найти вероятность того, что в данный момент включено: а) не менее трех телевизоров; б) не более двух телевизоров.
- 5. Всхожесть семян лимона составляет 80%. Найти вероятность того, что из 9 посеянных семян взойдут: а) не более семи; б) хотя бы два.
- 6. Наблюдениями установлено, что в некоторой местности в сентябре в среднем бывает 12 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце 8 дней окажутся не дождливыми: а) не менее 5 дней; б) хотя бы один день.
- 7. У шести животных имеется заболевание, причем выздоровление наступает в 98% случаев. Найти вероятность выздоровления: а) не менее 5 животных; б) хотя бы 2 животных.
- 8. Монету бросают 6 раз. Найти вероятность того, что герб выпадет: а) менее двух раз; б) не менее двух раз.
- 9. В мастерской имеется 8 моторов. При существующем режиме работы в данный момент с полной нагрузкой работают 70 % моторов. Найти вероятность того, что в данный момент с полной нагрузкой работают: а) не менее 6 моторов; б) хотя бы 3 мотора.
- 10. В 75% расход электроэнергии в течение одних суток не превышает установленной нормы. Найти вероятность того, что в

ближайшие 6 суток расход электроэнергии не превысит нормы: а) в течение не менее 4 суток; б) в течение не более 2 суток.

- 11. Средний процент нарушения работы кинескопа телевизора в течение гарантийного срока 10%. Вычислить вероятность того, что из 20 наблюдаемых телевизоров более 18 выдержат гарантийный срок.
- 12. Установлено, что 75% саженцев данной культуры приживаются. Вычислить вероятность того, что из 48 высаженных саженцев приживутся 30.
- 13. На склад поступило 30 ящиков стеклянных изделий. 90% ящиков поступают с неразбитыми изделиями. Определить вероятность того, что на склад поступит не более 10 ящиков с разбитыми изделиями.
- 14. Вероятность поражения мишени стрелком при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена не менее 75 раз.
- 15. 20% деталей не проходят проверку ОТК. Найти вероятность того, что среди 400 случайно отобранных деталей непроверенными окажется 70.
- 16. Вероятность пройти через некоторый заболоченный участок, не промочив ноги, равна 0,6. Какова вероятность того, что из 220 человек, проходивших через заболоченный участок, не промочат ноги от 120 до 133 человек? (Предполагается, что прохожие не используют опыт друг друга).
- 17. В ОТК поступила партия изделий, среди которых стандартные составляют 90%. Найти вероятность того, что из 100 проверенных изделий стандартных окажется 84.
- 18. Найти вероятность того, что переключение передач наступит 80 раз на 300 километровой трассе, если на каждом километре этой трассы вероятность переключения передач равна 0,25.
- 19. Вероятность выхода из строя за некоторое время одного конденсатора равна 0,2. Определить вероятность того, что за некоторое время из 100 конденсаторов выйдут из строя не менее 20.
- 20. Найти вероятность того, что в партии из 800 изделий число изделий высшего сорта заключено между 600 и 700, если изделия высшего сорта составляют 62%.
- 21. Монета была подброшена 40 раз. Найти вероятность того, что герб выпадает в 25 случаях.
- 22. Найти вероятность одновременного останова 30 машин из 100 работающих, если вероятность безостановочной работы для каждой машины равна 0,8.

- 23. При штамповке клемм 98% соответствуют стандарту. Найти вероятность того, что в партии из 200 клемм не соответствуют стандарту от 70 до 80 клемм.
- 24. Изделия высшего сорта составляют 50%. Найти вероятность того, что из 1000 изделий 500 высшего сорта.
- 25. Всхожесть семян данного растения 90%. Найти вероятность того, что из 900 высаженных семян не более 100 не взойдут.
- 26. Среди семян пшеницы 0,6% сорняков. Какова вероятность того, что при случайном отборе 1000 семян окажется не более 6 семян сорняков?
- 27. В течение года град приносит значительный ущерб примерно одному хозяйству из 50. Определить вероятность того, что из 400 хозяйств пострадает не более 6.
- 28. Прядильщица обслуживает 1000 веретен. 0,4% составляет обрыв нити на одном веретене в течение одной минуты. Найти вероятность того, что в течение одной минуты обрыв нити будет не менее чем в 5 веретенах.
- 29. Завод отправил на базу 5000 доброкачественных изделий. 0,02% изделий повреждается в пути. Найти вероятность того, что на базу поступит не более трех негодных изделий.
- 30. Вероятность попадания в цель при каждом выстреле равна 0,001. Найти вероятность того, что при 5000 выстрелов будет хотя бы два попадания в цель.

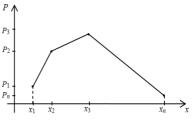
Домашнее задание к занятию 5

- 1. Приняв вероятности рождения мальчика и девочки одинаковыми, найти вероятность того, что среди 7 новорожденных будет: а) не более 4 девочек; б) хотя бы 2 девочки.
- 2. Детали высшего сорта, изготовленные на данном станке, составляют 40%. Найти вероятность того, что среди наудачу взятых 26 деталей половина окажется высшего сорта.
- 3. Известно, что выпуск сверл повышенной хрупкости (брак) составляет 2%. Сверла укладываются в коробки по 100 штук. Чему равна вероятность того, что в коробке число годных сверл окажется не менее 80?
- 4. На каждую тысячу семян некоторой культуры приходится в среднем 8 семян сорняков. Какова вероятность того, что среди взятых 200 семян окажется не менее трех семян сорняков?

Занятие 6. Дискретная случайная величина, ее способы задания и числовые характеристики

Основные формулы и понятия, необходимые при решении задач

Случайной величиной называется величина, которая в результате испытания принимает только одно из возможных значений, заранее неизвестное и зависящее от ряда причин.

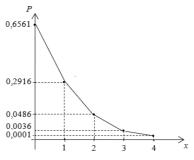

Случайные величины бывают дискретными и непрерывными.

Дискретная случайная величина характеризуется значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются. Соответствие между возможными значениями дискретной случайной величины и соответствующими им вероятностями называется законом распределения дискретной случайной величины.

Если известны все возможные значения $x_1, x_2, ..., x_n$ случайной величины X и вероятности $p_1, p_2, ..., p_n$ появления этих значений, то считают, что закон распределения ДСВ X известен и он может быть записан в виде таблицы:

X	x_1	x_2	 x_{i}	 X_n	~
$P(X = x_i) = p_i$	p_1	p_2	p_{i}	p_n	$\sum p_i = 1$

Закон распределения ДСВ можно изобразить графически, если в прямоугольной системе координат изобразить точки $(x_1; p_1), (x_2; p_2), ..., (x_n; p_n)$ и соединить их отрезками прямых линий. Полученная фигура называется многоугольником распределения.



Пример 9. В зерне, предназначенном для очистки, содержится 10 % сорняков. Наугад отобраны 4 зерна. Обозначим случайную величину $X = \{$ число сорняков среди четырех отобранных $\}$. Построить закон распределения ДСВ X и многоугольник распределения.

Pешение. По условию примера $n\!=\!4,\;p\!=\!0,\!1,\;q\!=\!0,\!9$. Тогда:

$$\begin{aligned} p_1 &= P_4(0) = C_4^0 p^0 q^4 = 0,6561; \\ p_2 &= P_4(1) = C_4^1 p^1 q^3 = 0,2916; \\ p_3 &= P_4(2) = C_4^2 p^2 q^2 = 0,0486; \\ p_4 &= P_4(3) = C_4^3 p^3 q^1 = 0,0036; \\ p_5 &= P_4(4) = C_4^4 p^4 q^0 = 0,0001. \end{aligned}$$

Запишем закон распределения ДСВ X в виде таблицы и построим многоугольник распределения:

X	0	1	2	3	4
p_i	0,6561	0,2916	0,0486	0,0036	0,0001

ДСВ может быть задана ее функцией распределения. Рассмотрим событие, состоящее в том, что случайная величина X примет какоенибудь значение, меньшее произвольного числа x, т. е. X < x. Это событие имеет определенную вероятность.

Функцией распределения случайной величины X называется функция F(x), выражающая для каждого x вероятность того, что случайная величина X примет какое-нибудь значение, меньшее x.

Через функцию F(x) легко выражаются следующие вероятности:

$$P(X \ge x) = 1 - P(X < x);$$

$$P(x_1 \le X < x_2) = P(X < x_2) - P(X < x_1) = F(x_2) - F(x_1).$$

Функция распределения обладает свойствами:

- 1. $F(x) \in [0; 1]$;
- 2. Если $x_1 < x_2$, где $x_1, x_2 \in R$, то $F(x_1) \le F(x_2)$;
- 3. $\lim_{x \to \infty} F(x) = \lim_{x \to \infty} P(X < x) = 0$;
- 4. $\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} P(X < x) = 1;$
- 5. $\lim_{x \to x_0 0} F(x) = F(x_0)$.

Пример 10. Анализируется группа из десяти коров. Известно, что в этой группе есть четыре рекордсменки. Из группы случайно отбирают пять коров. Записать закон распределения случайной величины X – числа рекордсменок среди отобранных коров. Получить ее функцию распределения F(x) и построить ее. Вычислить вероятность события, что среди отобранных будет не менее 3 рекордсменок.

Решение. Число рекордсменок, попавших в группу отбора, может быть 0, 1, 2, 3, 4. Составим закон распределения случайной величины X.

Для этого каждому из ее значений поставим в соответствие вероятность их появления. Заметим, что рассматриваемые события попарно несовместные, поэтому найдем вероятности, руководствуясь классическим определением вероятности:

$$P(X=0) = C_6^5 : C_{10}^5 = \frac{6!}{5!1!} : \frac{10!}{5! \cdot 5!} = \frac{1}{42}; \ P(X=1) = (C_4^1 \cdot C_6^4) : C_{10}^5 = \frac{10}{42};$$

$$P(X=2) = (C_4^2 \cdot C_6^3) : C_{10}^5 = \frac{20}{42}; \ P(X=3) = (C_4^3 \cdot C_6^2) : C_{10}^5 = \frac{10}{42};$$

$$P(X=4) = (C_4^{24} \cdot C_6^1) : C_{10}^5 = \frac{1}{42}.$$


Для формирования функции распределения случайной величины X ее закон распределения целесообразно дополнить строкой накопленных вероятностей:

X	0	1	2	3	4
p	$\frac{1}{42}$	$\frac{10}{42}$	$\frac{20}{42}$	$\frac{10}{42}$	$\frac{1}{42}$
p	$\frac{1}{42}$	$\frac{11}{42}$	$\frac{31}{42}$	$\frac{41}{42}$	1

Тогда функция распределения случайной величины X будет иметь вид:

$$F(x) = \begin{cases} 0, & \text{если } x \le 0; \\ \frac{1}{42}, & \text{если } 0 < x \le 1; \\ \frac{11}{42}, & \text{если } 1 < x \le 2; \\ \frac{31}{42}, & \text{если } 1 < x \le 3; \\ \frac{41}{42}, & \text{если } 3 < x \le 4; \\ 1, & \text{если } x > 4. \end{cases}$$

Построим функцию распределения случайной величины.

Вероятность того, что среди отобранных будет не менее трех рекордсменок, найдем, воспользовавшись равенством

$$P(x_1 \le X \le x_2) = F(x_2) - F(x_1).$$

Тогда
$$P(3 \le X \le \infty) = F(\infty) - F(3) = 1 - \frac{31}{42} = \frac{11}{42}$$
.

Наиболее важные свойства дискретной случайной величины описываются ее характеристиками. Одной из таких характеристик является математическое ожидание случайной величины.

Пусть известен закон распределения ДСВ X. Математическим ожиданием ДСВ X называется сумма произведений каждого значения этой величины на соответствующую вероятность:

$$M(X) = x_1 p_1 + x_2 p_2 + ... + x_n p_n = \sum_{i=1}^{n} x_i p_i.$$

Математическое ожидание случайной величины приближенно равно среднему арифметическому всех ее значений. Поэтому в практических задачах часто за математическое ожидание принимают среднее значение этой случайной величины.

Пример 11. Стрелок выбивает 4, 8, 9 и 10 очков с вероятностями 0,1; 0,45; 0,3 и 0,15. Найти математическое ожидание числа очков при одном выстреле.

Решение. Обозначим случайную величину $X = \{$ число выбитых очков $\}$. Тогда $M(X) = 4 \cdot 0, 1 + 8 \cdot 0, 45 + 9 \cdot 0, 3 + 10 \cdot 0, 15 = 8, 2$. Таким образом, ожидаемое среднее значение числа выбитых очков при одном выстреле равно 8,2, а при 10 выстрелах -82.

Математическое ожидание имеет следующие основные свойства:

1)
$$M(C) = C$$
;

2)
$$M(C \cdot X) = C \cdot M(X)$$
;

- 3) $a \le M(X) \le b$, где $a = \min(x_i)$, $b = \max(x_i)$;
- 4) M(X+Y) = M(X) + M(Y);
- 5) $M(X \cdot Y) = M(X) \cdot M(Y)$, где X и Y независимые случайные величины.

Разность X - M(X) называется *отвелонением* случайной величины X от ее математического ожидания. Эта разность является случайной величиной и ее математическое ожидание равно нулю, т. е. M(X - M(X)) = 0.

Для характеристики случайной величины, кроме математического ожидания, используется и дисперсия, которая дает возможность оценить рассеяние (разброс) значений случайной величины около ее математического ожидания. При сравнении двух однородных случайных величин с равными математическими ожиданиями «лучшей» считается та величина, которая имеет меньший разброс, т. е. меньшую дисперсию.

Дисперсией случайной величины X называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: $D(X) = M((X - M(X))^2)$.

В практических задачах для вычисления дисперсии используют равносильную формулу $D(X) = M(X^2) - (M(X))^2$.

Дисперсия имеет следующие основные свойства:

- 1) D(C) = 0;
- 2) $D(C \cdot X) = C^2 \cdot D(X)$;
- 3) $D(X\pm Y)=D(X)\pm D(Y)$, где X и Y независимые случайные величины.

Дисперсия характеризует разброс случайной величины около ее математического ожидания и, как видно из формулы, измеряется в квадратных единицах по сравнению с единицами самой случайной величины. Поэтому для согласования единиц измерения разброса случайной величины с единицами измерения самой величины вводится среднее квадратическое отклонение $\sigma(X) = \sqrt{D(X)}$.

Пример 12. Найти дисперсию и среднее квадратическое отклонение ДСВ X, заданной законом распределения:

X	-5	2	3	4
p_i	0,4	0,3	0,1	0,2

Решение. Дисперсия ДСВ Х вычисляется по формуле

$$D(X) = M(X^2) - (M(X))^2$$
.

Найдем математическое ожидание данной случайной величины: $M(X) = -5 \cdot 0, 4 + 2 \cdot 0, 3 + 3 \cdot 0, 1 + 4 \cdot 0, 2 = -0, 3.$

Запишем закон распределения для случайной величины X^2 :

X^2	25	4	9	16
p_i	0,4	0,3	0,1	0,2

Тогда
$$M(X^2) = 25 \cdot 0,4 + 4 \cdot 0,3 + 9 \cdot 0,1 + 16 \cdot 0,2 = 15,3,$$

 $D(X) = 15,3 - (-0,3)^2 = 15,21, \ \sigma(X) = \sqrt{15,21} \approx 3,9.$

Задания к аудиторному занятию 6

- 1. В зерне, предназначенном для чистки, 10 % сорняков. Наудачу отобраны 5 зерен. Написать закон распределения СВ X числа сорняков среди 5 отобранных. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 2. В денежной лотерее на 100 билетов разыгрывается один выигрыш в 20р., два выигрыша по 10р. и 10 выигрышей по 1р. Составить закон распределения СВ X-возможного выигрыша на один билет. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 3. Партия из 8 изделий содержит 5 стандартных. Наудачу отбирают 4 изделия. Составить закон распределения СВ X числа стандартных изделий среди отобранных. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 4. Банк выдает 5 кредитов. Вероятность невозврата кредита равна 0,2 для каждого из заемщиков. Составить закон распределения СВ X количества заемщиков, не вернувших кредит по окончании срока. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 5 Производится 4 независимых испытания, в каждом из которых вероятность появления события A равна 0,6. Составить закон распределения СВ X числа появлений события A в указанных испытаниях. Составить функцию распределения F(x) и построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 6. На пути движения автомобиля четыре светофора. Каждый из них с вероятностью 0.5 либо разрешает, либо запрещает автомашине дальнейшее движение. Составить закон распределения СВ X числа

светофоров, пройденных автомашиной без остановки. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.

- 7. Две игральные кости одновременно бросают два раза. Написать закон распределения СВ X числа выпадений нечетного числа очков на двух игральных костях. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 8. В партии из 10 деталей имеется 7 стандартных. Наудачу отобраны три детали. Составить закон распределения СВ X числа стандартных деталей среди отобранных. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 9. В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить закон распределения СВ X числа стандартных деталей среди отобранных. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.
- 10. В партии деталей 10% нестандартных. Наудачу отобраны 4 детали. Написать закон распределения СВ X числа нестандартных деталей среди четырех отобранных. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.

Домашнее задание к занятию 6

Вероятность сдачи данного экзамена для каждого из пяти студентов равна 0,9. Написать закон распределения СВ X — числа студентов, сдавших экзамен. Составить функцию распределения F(x), построить ее график. Найти M(X), D(X) и $\sigma(X)$.

Занятие 7. Непрерывная случайная величина, ее способы задания и числовые характеристики

Основные формулы и понятия, необходимые при решении задач

Непрерывной случайной величиной (НСВ) называется случайная величина, все возможные значения которой сплошь заполняют некоторый числовой промежуток.

Непрерывную случайную величину можно задать только аналитическим способом. Функция распределения F(x) этой случайной величины является непрерывной и кусочно-дифференцируемой функцией. Кроме интегральной функции распределения F(x) непрерывную случайную величину можно задать также дифференциальной функцией распределения f(x).

 Φ ункцией плотности распределения вероятностей f(x) непрерывной случайной величины называется производная функции распре-

деления: f(x) = F'(x). Из определения следует, что функция распределения F(x) является первообразной для функции f(x) и

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

Свойства плотности вероятностей f(x):

- 1. Плотность вероятностей f(x) является неотрицательной функцией: $f(x) \ge 0$.
- 2. Вероятность попадания в интервал для непрерывной случайной величины вычисляется по формуле

$$P(x_1 < X < x_2) = F(x_2) - F(x_1) = \int_{x_2}^{x_2} f(x) dx.$$

3. Несобственный интеграл от функции плотности равен 1:

$$\int_{-\infty}^{+\infty} f(x) dx = 1.$$

Пример 13. Непрерывная случайная величина задана функцией

плотности вероятностей
$$f\left(x\right) = \begin{cases} 0, & \text{если} & x < 0, \\ C\left(2x+1\right), & \text{если} & 0 \le x \le \frac{1}{3}, \\ 0, & \text{если} & x > \frac{1}{3}. \end{cases}$$

Требуется:

- 1) найти значение постоянной C;
- 2) найти функцию распределения F(x).

Решение. Плотность вероятностей должна удовлетворять условию

$$\int_{0}^{+\infty} f(x) dx = 1.$$

Поскольку вне отрезка $\left[0; \frac{1}{3}\right]$ плотность нулевая, то получаем:

$$\int_{0}^{\frac{1}{3}} C(2x+1) dx = 1 \Rightarrow C \cdot \int_{0}^{\frac{1}{3}} (2x+1) dx = 1 \Rightarrow$$

$$\Rightarrow C \cdot \left(x^{2} + x\right) \Big|_{0}^{\frac{1}{3}} = 1 \Rightarrow C \cdot \left(\frac{1}{9} + \frac{1}{3}\right) = 1 \Rightarrow C \cdot \frac{4}{9} = 1 \Rightarrow C = \frac{9}{4}.$$

Таким образом, функция плотности имеет вид:

$$f(x) = \begin{cases} 0, & \text{если} & x < 0, \\ \frac{9}{4}(2x+1), & \text{если} & 0 \le x \le \frac{1}{3}, \\ 0, & \text{если} & x > \frac{1}{3}. \end{cases}$$

Найдем функцию распределения. При x < 0 плотность вероятностей нулевая и также F(x) = 0.

При
$$0 \le x \le \frac{1}{3}$$
 функция $f\left(x\right) = \frac{4}{9}\left(2x+1\right)$, поэтому
$$F\left(x\right) = \int_{-\infty}^{x} f\left(t\right) \mathrm{d}t = \int_{-\infty}^{0} 0 \mathrm{d}t + \int_{0}^{x} \frac{9}{4}\left(2t+1\right) \mathrm{d}t = \frac{9}{4}\left(t^2+t\right)\Big|_{0}^{x} = \frac{9}{4}\left(x^2+x\right)$$
. При $x > \frac{1}{3}$ функция $f\left(x\right) = 0$, поэтому

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{\frac{1}{3}} \frac{9}{4} (2t+1) dt + \int_{\frac{1}{3}}^{x} 0 dt = \frac{9}{4} (t^{2}+t) \Big|_{0}^{\frac{1}{3}} = \frac{9}{4} \left(\frac{1}{9} + \frac{1}{3}\right) = \frac{9}{4} \cdot \frac{4}{9} = 1.$$

Итак, функция распределения равна

$$F(x) = \begin{cases} 0, & \text{если} \quad x < 0, \\ \frac{9}{4}(x^2 + x), & \text{если} \quad 0 \le x \le \frac{1}{3}, \\ 1, & \text{если} \quad x > \frac{1}{3}. \end{cases}$$

Математическое ожидание непрерывной случайной величины вычисляется по формуле

$$M(X) = \int_{-\infty}^{+\infty} f(x) dx.$$

Если вне отрезка [a;b] функция плотности вероятностей нулевая, то $M(X) = \int\limits_{-b}^{b} f(x) \mathrm{d}x$.

Дисперсия непрерывной случайной величины вычисляется по формуле: $D(X) = \int_{-\infty}^{+\infty} (x - M(X))^2 f(x) dx$. Если вне отрезка [a; b] функция плотности вероятностей нулевая, то

$$D(X) = \int_{0}^{b} (x - M(X))^{2} f(x) dx.$$

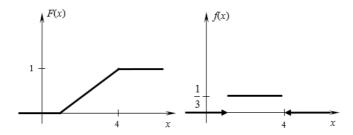
Получим рабочую формулу для вычисления дисперсии:

$$D(X) = \int_{a}^{b} (x - M(X))^{2} f(x) dx = \int_{a}^{b} (x^{2} - 2xM(X) + M^{2}(X)) f(x) dx =$$

$$= \int_{a}^{b} x^{2} f(x) dx - 2M(x) \int_{a}^{b} x f(x) dx + M^{2}(x) \int_{a}^{b} f(x) dx = \int_{a}^{b} x^{2} f(x) dx - M^{2}(X).$$

Пример 14. Непрерывная случайная величина задана функцией распределения

$$F\left(x\right) = \begin{cases} 0, & \text{если} & x < 1, \\ \frac{1}{3}(x-1), \text{если} & 1 \le x \le 4, \\ 1, & \text{если} & x > 4. \end{cases}$$


Требуется:

- 1) найти плотность распределения вероятностей f(x);
- 2) построить графики функций f(x) и F(x);
- 3) вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины;
- 4) вычислить вероятность попадания случайной величины в интервал (1; 2).

Решение. Плотность распределения вероятностей

$$f(x) = F'(x) = \begin{cases} 0, & \text{если} & x < 1, \\ \left(\frac{1}{3}(x-1)\right)', & \text{если} & 1 \le x \le 4, \\ 0, & \text{если} & x > 4 \end{cases} \begin{cases} 0, & \text{если} & x < 1, \\ \frac{1}{3}, & \text{если} & 1 \le x \le 4, \\ 0, & \text{если} & x > 4. \end{cases}$$

Построим графики функций f(x) и F(x).

Вычислим числовые характеристики случайной величины. Математическое ожидание равно

$$M(X) = \int_{1}^{4} xf(x) dx = \int_{1}^{4} \frac{1}{3} x dx = \frac{1}{3} \cdot \frac{x^{2}}{2} \Big|_{1}^{4} = \frac{16}{6} - \frac{1}{6} = \frac{15}{6} = 2,5.$$

Дисперсия равна

$$D(X) = \int_{1}^{4} x^{2} f(x) dx - M^{2}(x) = \int_{1}^{4} \frac{1}{3} x^{2} dx - \left(\frac{5}{2}\right)^{2} = \frac{1}{3} \cdot \frac{x^{3}}{3} \Big|_{1}^{4} - \frac{25}{4} = \frac{64}{9} - \frac{1}{9} - \frac{25}{4} = \frac{3}{4} = 0,75.$$

Среднее квадратическое отклонение равно

$$\sigma(X) = \sqrt{\overline{D(X)}} = \sqrt{0.75} \approx 0.87.$$

Вероятность попадания в заданный интервал вычислим по формуле $P(x_1 < X < x_2) = F(x_2) - F(x_1).$

Получим
$$P(1 < X < 2) = F(2) - F(1) = \frac{1}{3} \cdot (2-1) - \frac{1}{3} \cdot (1-1) = \frac{1}{3}$$

Задания к аудиторному занятию 7

Случайная величина X задана функцией распределения F(x). Требуется:

- а) найти плотность распределения вероятностей f(x);
- б) найти математическое ожидание M(X) и дисперсию D(X);
- в) построить графики функций F(x) и f(x);
- г) найти вероятность попадания СВ X в интервал (a; b).

$$0, \qquad \text{если} \qquad x < \frac{3\pi}{4}$$

$$F(x) = \begin{cases} \cos 2x, \text{ если } \frac{3\pi}{4} \le x \le \pi, \\ 1, \text{ если } x > \pi; \end{cases}$$

$$x = \begin{cases} 0, & \text{если} \quad x < 0, \\ \frac{1}{x^2 + 2x}, & \text{если} \quad 0 < x < 4. \end{cases}$$

$$\begin{bmatrix} 24 \\ 1, & \text{если} & x > 4; \\ 0, & \text{если} & x < -1, \end{bmatrix}$$

3.
$$F(x) = \begin{cases} \frac{1}{9}(x+1)^2, & \text{если } -1 \le x \le 2, \\ 1, & \text{если } x > 2. \end{cases}$$

$$= \begin{cases} 0, & \text{если} & x < 0, \\ \frac{x^2}{100}, & \text{если} & 0 \le x \le 10, \\ 1, & \text{если} & x > 10. \end{cases}$$

$$1. \ F(x) = \begin{cases} 0, & \text{если} & x < \frac{3\pi}{4}, \\ \cos 2x, & \text{если} & \frac{3\pi}{4} \le x \le \pi, \\ 1, & \text{если} & x > \pi; & a = \frac{3\pi}{4}; b = \frac{5\pi}{6}. \end{cases}$$

$$2. \ F(x) = \begin{cases} 0, & \text{если} & x < 0, \\ \frac{1}{24}(x^2 + 2x), & \text{если} & 0 \le x \le 4, \\ 1, & \text{если} & x > 4; & a = 0; b = 1. \end{cases}$$

$$3. \ F(x) = \begin{cases} 0, & \text{если} & x < -1, \\ \frac{1}{9}(x+1)^2, & \text{если} & -1 \le x \le 2, \\ 1, & \text{если} & x > 2; & a = 1; b = 2. \end{cases}$$

$$4. \ F(x) = \begin{cases} 0, & \text{если} & x < 0, \\ \frac{x^2}{100}, & \text{если} & 0 \le x \le 10, \\ 1, & \text{если} & x > 10; & a = 5; b = 10. \end{cases}$$

$$5. \ F(x) = \begin{cases} 0, & \text{если} & x < 1, \\ \frac{1}{2}(x-1), & \text{если} & 1 \le x \le 3, \\ 1, & \text{если} & x > 3; & a = 2; b = 3. \end{cases}$$

$$0, & \text{если} & x < \frac{\pi}{2},$$

6.
$$F(x) = \begin{cases} 1 - \sin x, \text{ если } \frac{\pi}{2} \le x \le \pi, \\ 1, \text{ если } x > \pi; \end{cases}$$
 $a = \frac{\pi}{2}; b = \frac{3\pi}{4}.$

7.
$$F(x) = \begin{cases} 0, & \text{если} & x < 0, \\ \frac{x^2}{9}, & \text{если} & 0 \le x \le 3, \\ 1, & \text{если} & x > 3; \end{cases}$$
 $a = 0; b = 1.$

8.
$$F(x) = \begin{cases} 0, & \text{если} \quad x < 0, \\ \frac{1}{33}(3x^2 + 2x), & \text{если} \quad 0 \le x \le 3, \\ 1, & \text{если} \quad x > 3; \quad a = 0; b = 2. \end{cases}$$
9. $F(x) = \begin{cases} 0, & \text{если} \quad x < 0, \\ \frac{x^2}{49}, & \text{если} \quad 0 \le x \le 7, \\ 1, & \text{если} \quad x > 7; \qquad a = 6; b = 7. \end{cases}$
10. $F(x) = \begin{cases} 0, & \text{если} \quad x < \frac{3\pi}{2}, \\ \cos x, & \text{если} \quad \frac{3\pi}{2} \le x \le 2\pi, \\ 1, & \text{если} \quad x > 2\pi; \qquad a = \frac{3\pi}{2}; b = \frac{7\pi}{4}. \end{cases}$

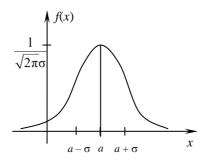
Домашнее задание к занятию 7

Случайная величина X задана функцией распределения F(x). Требуется:

- а) найти плотность распределения вероятностей f(x);
- б) найти математическое ожидание M(X) и дисперсию D(X);
- в) построить графики функций F(x) и f(x);
- Γ) найти вероятность попадания СВ X в интервал (a; b).

$$F(x) = \begin{cases} 0, \text{ если } & x < 0, \\ \frac{x}{3}, \text{ если } 0 \le x \le 3, \\ 1, \text{ если } & x > 3; \end{cases}$$
 $a = 1; b = 2.$

Занятие 8. Нормальный закон распределения СВ


Основные формулы и понятия, необходимые при решении задач

Непрерывная случайная величина распределена по *нормальному закону*, если ее плотность распределения вероятностей имеет вид:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}} \text{при } x \in (-\infty, +\infty).$$

Нормальный закон распределения характеризуется параметрами a — математическим ожиданием CB и σ — средним квадратическим отклонением CB.

График функции плотности вероятностей f(x) называется *нормальной кривой*, или *кривой* Гаусса, которая графически представляется в следующем виде.

Отметим влияние параметров a, σ на нормальную кривую. Параметр a не влияет на форму нормальной кривой, его изменения приводят только к сдвигу кривой вдоль оси Ox. Параметр σ влияет на форму нормальной кривой, с увеличением σ максимальная ордината графика уменьшается и кривая становится более пологой, с уменьшением σ максимальная ордината графика увеличивается и кривая вытягивается вдоль оси Oy.

Найдем вероятность попадания нормальной случайной величины в заданный интервал:

$$P(\alpha < X < \beta) = \int_{\alpha}^{\beta} f(x) dx = \frac{1}{\sqrt{2\pi} \sigma} \int_{\alpha}^{\beta} e^{-\frac{(x-\alpha)^2}{2\sigma^2}} dx.$$

Введем новую переменную $t = \frac{x-a}{\sigma} \Rightarrow x = \sigma t + a$, $dx = \sigma dt$, с новыми

пределами интегрирования от $\frac{\alpha - a}{\sigma}$ до $\frac{\beta - a}{\sigma}$.

Получим:

$$P(\alpha < X < \beta) = \frac{1}{\sqrt{2\pi}} \int_{\frac{\alpha-\alpha}{\sigma}}^{\frac{\beta-\alpha}{\sigma}} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}} \int_{0}^{\frac{\beta-\alpha}{\sigma}} e^{-\frac{t^2}{2}} dt - \frac{1}{\sqrt{2\pi}} \int_{0}^{\frac{\alpha-\alpha}{\sigma}} e^{-\frac{t^2}{2}} dt.$$

Пользуясь функцией Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{\frac{t^2}{2}} dt$, получим

$$P\left(\alpha < X < \beta\right) = \Phi\left(\frac{\beta - \alpha}{\sigma}\right) - \Phi\left(\frac{\alpha - \alpha}{\sigma}\right).$$

Вероятность заданного отклонения δ нормальной случайной величины от ее математического ожидания a вычисляется по формуле

$$P(|X-a|<\delta) = 2\Phi\left(\frac{\delta}{\sigma}\right).$$

При отклонении $\delta = 3\sigma$ получим

$$P(|X-a| < 3\sigma) = 2\Phi(3) = 2 \cdot 0,49865 = 0,9973 = 99,73 \%.$$

Значит, вероятность отклонения значений нормальной случайной величины от ее математического ожидания более чем на 3σ равна 100-99,73=0,27%. По принципу невозможности маловероятных событий это невозможное событие. Таким образом, практически все значения нормальной случайной величины отклоняются от ее математического ожидания не более чем на 3σ , т. е. попадают в интервал $(a-3\sigma,a+3\sigma)$. В этом заключается правило «трех сигм».

Пример 15. Станок изготавливает детали, размер которых распределен нормально. Математическое ожидание размера детали равно 240 мм, среднее квадратическое отклонение — 0,8 мм. Годными считаются детали размером от 238,5 до 242 мм. Вычислить: 1) процент изготовления годных деталей; 2) процент бракованных деталей, если точность станка снизится и будет характеризоваться средним квадратическим отклонением 1 мм.

Решение. Запишем кратко условие задачи: $a=240; \, \sigma_1=0,8; \, \sigma_2=1; \, \alpha=238,5; \, \beta=242.$

1. Вычислим вероятность попадания в заданный интервал (238,5; 242) по формуле $P\left(\alpha < X < \beta\right) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$.

$$P(238, 5 < X < 242) = \Phi\left(\frac{242 - 240}{0,8}\right) - \Phi\left(\frac{238, 5 - 240}{0,8}\right) =$$

$$=\Phi(2,5)+\Phi(1,88)=0,4938+0,4699=0,9637=96,37\%.$$

Итак, процент годных деталей при $\sigma_1 = 0.8$ составляет 96,37 %.

2. Вычислим вероятность попадания в тот же интервал при $\sigma_2 = 1$:

$$P(238,5 < X < 242) = \Phi\left(\frac{242 - 240}{1}\right) - \Phi\left(\frac{238,5 - 240}{1}\right) =$$

= $\Phi(2) - \Phi(1,5) = 0,4772 + 0,4332 = 0,9104 = 91,04 \%.$

Таким образом, при снижении точности станка или при увеличении σ процент годных деталей уменьшится. Процент брака при этом составит: 100-91.04=8.96 %.

Пример 16. Расход семян на 1 га является случайной величиной, распределенной нормально. Норма высева на 1 га составляет 150 кг, а среднее квадратическое отклонение расхода семян равно 10 кг. Определить: 1) вероятность того, что расход семян на 100 га не превысит 15,1 т; 2) количество семян, обеспечивающих посев 100 га с вероятностью 0,99.

Решение. Вычислим параметры нормальной случайной величины — расхода семян на 100 га, которая равна сумме 100 независимых случайных величин X_i —расхода семян на 1 га с параметрами $a_i = 150$ кг и $\sigma_i = 10$ кг, $i = \overline{1,100}$. Используем свойства математического ожидания и дисперсии:

$$M(X) = \sum_{i=1}^{100} M(X_i) = 150 \cdot 100 = 15000 \text{ Kg} = 15 \text{ T},$$

$$\sigma^2 = \sum_{i=1}^{100} \sigma_i^2 = 100 \cdot 100 = 10000 \Rightarrow \sigma = 100 \text{ Kg} = 0,1 \text{ T}.$$

1. Запишем кратко условие задачи: a=15 т; $\sigma=0,1$ т; $\alpha=0$ т; $\beta=15,1$ т.

Вычислим вероятность попадания в заданный интервал по формуле

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

$$P(0 < X < 15, 1) = \Phi\left(\frac{15, 1 - 15}{0, 1}\right) - \Phi\left(\frac{0 - 15}{0, 1}\right) =$$

$$= \Phi(1) + \Phi(150) = 0,3413 + 0,5 = 0,8413.$$

Итак, вероятность того, что расход семян на 100 га не превысит 15,1 т, равна 84,13 %.

2. Запишем кратко условие задачи: a=15 т; $\sigma=0,1$ т; $P(0 < X < \beta)=0,99$.

Решение. Запишем вероятность попадания в заданный интервал

$$P(0 < X < \beta) = \Phi\left(\frac{\beta - 15}{0,1}\right) - \Phi\left(\frac{0 - 15}{0,1}\right) = \Phi\left(\frac{\beta - 15}{0,1}\right) + \Phi(150) =$$

$$= \Phi\left(\frac{\beta - 15}{0,1}\right) + 0,5. \text{ Из равенства } \Phi\left(\frac{\beta - 15}{0,1}\right) + 0,5 = 0,99 \Rightarrow$$

$$\Rightarrow \Phi\left(\frac{\beta - 15}{0,1}\right) = 0,99 - 0,5 = 0,49 \Rightarrow \frac{\beta - 15}{0,1} = 2,32 \Rightarrow \beta = 15,23 \text{ т.}$$

Итак, количество семян, обеспечивающих посев 100 га, в 99 % случаях, не превысит 15,23 т.

Задания к аудиторному занятию 8

- 1. При изготовлении некоторого изделия его вес X подвержен случайным колебаниям. Стандартный вес изделия равен 30 г, его среднее квадратическое отклонение равно 0,7, а случайная величина X распределена по нормальному закону. Найти: 1) вероятность того, что вес наудачу выбранного изделия находится в пределах от 28 до 31 г; 2) величину, которую не превысит вес наудачу взятого изделия с вероятностью 0,95.
- 2. На станке изготовляются втулки. Длина втулки представляет собой случайную величину, распределенную по нормальному закону, имеющую среднее значение 20 см и дисперсию 0,04 см². Найти: 1) процент втулок, длина которых заключена между 19,7 и 20,3 см; 2) величину, которую не превысит длина наудачу взятой втулки с вероятностью 0,95.
- 3. Из некоторого пункта ведется стрельба из орудия вдоль некоторой прямой по цели. Дальность полета снаряда имеет нормальное распределение с математическим ожиданием 1000 м и средним квадратическим отклонением 50 м. Найти: 1) процент снарядов, которые дадут перелет от 40 до 60 м; 2) процент снарядов, которые пролетят расстояние, меньшее средней дальности.
- 4. Считается, что отклонение длины изготавливаемых деталей от стандартных является случайной величиной распределенной по нормальному закону. Зная, что длина стандартной детали 40 см, а среднее квадратическое отклонение 0,4 см, найти: 1) процент деталей, длина которых заключена в промежутке (39,8; 40,2 см); величину, которую не превысит длина наудачу взятой детали с вероятностью 0,9.
- 5. Случайные значения веса зерна распределены нормально. Математическое ожидание веса зерна равно 0,15 г, среднее квадратическое отклонение равно 0,03 г. Нормальные всходы дают зерна, вес которых

- более 0,10 г. Определить: 1) процент семян, которые дадут нормальные всходы; 2) величину, которую не превзойдет вес отдельного зерна с вероятностью 0,99.
- 6. Норма высева на 1 га равна 150 кг. Фактический расход семян на 1 га колеблется около этого значения; случайные значения нормы высева распределены нормально и характеризуются средним квадратическим отклонением 10 кг. Определить: 1) вероятность того, что расход семян на 100 га не превысит 15,1 т; 2) вес семян, обеспечивающий посев 100 га с вероятностью 0,95.
- 7. Средняя глубина посева семян составляет 4 см; отдельные отклонения от этого значения случайные, распределены нормально со средним квадратическим отклонением 0,6 см. Определить: 1) процент семян, посеянных на глубину более 5 см; 2) процент семян, посеянных на глубину менее 3 см.
- 8. Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 260 мм, среднее квадратическое отклонение 0,8 мм. Годными считаются детали, размер которых заключен между 259 и 262 мм. Определить: 1) процент изготовления годных деталей; 2) процент бракованных деталей, если точность изготовления ухудшится и будет характеризоваться средним квадратическим отклонением 1 мм.
- 9. Путем взятия проб установлено, что потери зерна при уборке в среднем составили 3 г на 1 m^2 , среднее квадратическое отклонение потерь 1 г. Определить: 1) вероятность того, что на 1 га потери составят не менее 29,8 кг; 2) величину, которую не превзойдут потери на 1 га с вероятностью 0,99.
- 10. Средний диаметр стволов деревьев на некоторой делянке равен 30 см, среднее квадратическое отклонение 5 см. Считая, что диаметр ствола есть случайная величина, распределенная нормально, определить: 1) процент стволов, имеющих диаметр свыше 25 см; 2) величину, которую не превысит диаметр ствола случайно отобранного дерева с вероятностью 0,95.

Домашнее задание к занятию 8

1. Распределение хозяйств некоторого района по проценту выполнения плана продажи продукции государству подчинено нормальному закону распределения с математическим ожиданием 103,3 % и средним квадратическим отклонением 1,5 %. Определить: 1) процент хозяйств, не выполнивших план; 2) величину, которую не превзойдет процент выполнения плана наудачу взятого хозяйства с вероятностью 0,95.

2. Диаметр валиков, обработанных на токарном станке, подчинен нормальному закону с математическим ожиданием 23 мм и средним квадратическим отклонением 0,5 мм. Годными считаются те валики, диаметр которых заключен между 22 и 24 мм. Определите вероятность изготовления годного валика.

Типовое задание к тематическому модулю «Теория вероятностей»

- 1. Сколько различных расписаний движения 15 автобусов можно составить в случае, если движение их осуществляется 3 различным маршрутам.
- 4. На тепловой электростанции 15 сменных инженеров, из них шесть женщин. В смену занято пять человек. Найдите вероятность того, что в случайно выбранную смену окажутся 1 женщина и 4 мужчины?
- 5. Вероятность того, что студент сдаст первый экзамен, равна 0,7, второй 0,6, третий 0,5, четвертый 0,3. Вычислите вероятность того, что студент сдаст: хотя бы 3 экзамена.
- 6. Сборщик получил 2 коробки деталей, изготовленных первым заводом и 3 коробки деталей, изготовленных вторым заводом. Вероятность того, что деталь первого завода стандартная, равна 0,85, а второго завода 0,65. Сборщик наудачу извлекает деталь из наудачу взятой коробки. Найдите вероятность того, что извлечена нестандартная деталь.
- 7. На двух станках участка изготовляются шайбы. На первом станке производится 45 % всех шайб. В продукции каждого станка брак составляет соответственно 3 и 5 %. Найдите вероятность того, что случайно взятую дефектную шайбу изготовили на втором станке.
- 8. Дискретная случайная величина X задана законом распределения. Сформируйте функцию распределения СВ F(x). Вычислите $P(X \le 3)$ и числовые характеристики случайной величины: математическое ожидание, дисперсию и среднее квадратическое отклонение.

X	-3	-1	2	4	7
P	0,1	0,3	0,3	0,2	0,1

9. На станке изготовляются втулки. Длина втулки представляет собой случайную величину, распределенную по нормальному закону, с математическим ожиданием 25 см и средним квадратическим отклонением 0,3 см. Найти: 1) процент втулок, длина которых заключена между 24,7 и 25,1 см; 2) величину, которую не превысит длина наудачу взятой втулки с вероятностью 0,95.

Значения функции
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

	ПРИЛОЖЕНИЯ									
	Приложение 1									
	x^2									
	Значения функции $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$									
$\sqrt{2\pi}$										
х	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2903	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2526	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1985	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0112	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033 0024	0032	0031	0030	0029	0028	0027	0026 0019	0025 0018	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,4	0017	0017	0016	0016	0013	0015	0014	0014	0013	0009
3,4	0009	0012	0012	00011	00011	0010	0010	0010	0009	0009
3,6	0009	0006	0006	0005	0005	0007	0007	0007	0007	0004
3,7	0004	0004	0004	0003	0003	0003	0003	0003	0003	0004
3,8	0003	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,9	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,7	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Приложение 2 Значения функции $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$ $\frac{x}{\sqrt{0}} = \frac{x}{\sqrt{0}} = \frac{x}{\sqrt{0}} = \frac{x}{\sqrt{0}}$

0,00 0,0000 0,39 0,1517 0,78 0,2823 1,17 0,3790 0,01 0,0040 0,40 0,1554 0,79 0,2852 1,18 0,3810 0,02 0,0080 0,41 0,1591 0,80 0,2881 1,19 0,3830 0,03 0,0120 0,42 0,1628 0,81 0,2910 1,20 0,3849 0,04 0,0160 0,43 0,1664 0,82 0,2939 1,21 0,3869 0,05 0,0199 0,44 0,1700 0,83 0,2967 1,22 0,3883 0,06 0,0239 0,45 0,1736 0,84 0,2995 1,23 0,3983 0,06 0,0239 0,47 0,1808 0,86 0,3051 1,25 0,3843 0,08 0,0319 0,47 0,1808 0,86 0,3051 1,25 0,3944 0,10 0,0398 0,49 0,1879 0,88 0,3106 1,27 0,3940		- A. / \		# / \		- X -(-)		-X / \
0.01 0.0040 0.40 0.1554 0.79 0.2852 1,18 0,3810 0.02 0.0080 0.41 0.1591 0.80 0.2881 1,19 0,3830 0.03 0.0120 0.42 0.1628 0.81 0.2910 1,20 0,3849 0.04 0.0160 0.43 0.1664 0.82 0.2939 1,21 0.3869 0.05 0.0199 0.44 0.1700 0.83 0.2967 1,22 0.3883 0.06 0.0239 0.45 0.1736 0.84 0.2995 1,23 0.3907 0.07 0.0279 0.46 0.1772 0.85 0.3023 1,24 0.3925 0.08 0.0319 0.47 0.1808 0.86 0.3051 1,25 0.3944 0.09 0.0339 0.48 0.1884 0.87 0.3078 1,26 0.3962 0.10 0.0398 0.49 0.1879 0.88 0.3106 1,27 0.3980	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0,02 0,0080 0,41 0,1591 0,80 0,2881 1,19 0,3830 0,03 0,0120 0,42 0,1628 0,81 0,2910 1,20 0,3849 0,04 0,0160 0,43 0,1664 0,82 0,2939 1,21 0,3869 0,05 0,0199 0,44 0,1700 0,83 0,2967 1,22 0,3883 0,06 0,0279 0,46 0,1772 0,85 0,3023 1,24 0,3925 0,08 0,0319 0,47 0,1808 0,86 0,3051 1,25 0,3944 0,09 0,0359 0,48 0,1884 0,87 0,3078 1,26 0,3962 0,11 0,0438 0,490 0,1819 0,88 0,3103 1,27 0,3982 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032		- ,				_	_	
0,03 0,0120 0,42 0,1628 0,81 0,2910 1,20 0,3849 0,04 0,0160 0,43 0,1664 0,82 0,2939 1,21 0,3869 0,05 0,0199 0,44 0,1700 0,83 0,2967 1,22 0,3883 0,06 0,0239 0,45 0,1736 0,84 0,2995 1,23 0,3907 0,07 0,0279 0,46 0,1772 0,85 0,3023 1,24 0,3925 0,08 0,0319 0,47 0,1808 0,86 0,3051 1,25 0,3944 0,09 0,0359 0,48 0,1884 0,87 0,3078 1,26 0,3962 0,10 0,0398 0,49 0,1879 0,88 0,3106 1,27 0,3980 0,11 0,0438 0,50 0,1915 0,89 0,3133 1,28 0,3839 0,12 0,0478 0,51 0,1950 0,90 0,3135 1,29 0,4015	- , -	- ,	-, -		- ,		_	
0.04 0.0160 0.43 0.1664 0.82 0.2939 1.21 0.3869 0.05 0.0199 0.44 0.1700 0.83 0.2967 1.22 0.3883 0.06 0.0239 0.45 0.1736 0.84 0.2995 1.23 0.3907 0.07 0.0279 0.46 0.1772 0.85 0.3023 1.24 0.3925 0.08 0.0319 0.47 0.1808 0.86 0.3051 1.25 0.3944 0.09 0.0359 0.48 0.1884 0.87 0.3078 1.26 0.3962 0.10 0.0398 0.49 0.1879 0.88 0.3106 1.27 0.3980 0.11 0.0438 0.50 0.1915 0.89 0.3133 1.28 0.3839 0.12 0.0478 0.51 0.1950 0.90 0.3159 1.29 0.4015 0.13 0.0517 0.52 0.1985 0.91 0.3186 1.30 0.4032								
0.05 0,0199 0,44 0,1700 0,83 0,2967 1,22 0,3883 0,06 0,0239 0,45 0,1736 0,84 0,2995 1,23 0,3907 0,07 0,0279 0,46 0,1772 0,85 0,3023 1,24 0,3925 0,08 0,0319 0,47 0,1808 0,86 0,3051 1,25 0,3944 0,09 0,0359 0,48 0,1884 0,87 0,3078 1,26 0,3962 0,10 0,0398 0,49 0,1879 0,88 0,3106 1,27 0,3980 0,11 0,0438 0,50 0,1915 0,89 0,3133 1,28 0,3839 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049								
0.06 0.0239 0.45 0.1736 0.84 0.2995 1,23 0,3907 0.07 0.0279 0.46 0.1772 0.85 0,3023 1,24 0,3925 0.08 0.0319 0.47 0,1808 0.86 0,3051 1,25 0,3944 0.09 0.0359 0.48 0,1884 0.87 0,3078 1,26 0,3962 0.10 0.0398 0.49 0,1879 0,88 0,3106 1,27 0,3980 0.11 0,0438 0,50 0,1915 0.89 0,3133 1,28 0,3383 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066	0,04							
0,07 0,0279 0,46 0,1772 0,85 0,3023 1,24 0,3925 0,08 0,0319 0,47 0,1808 0,86 0,3051 1,25 0,3944 0,09 0,0359 0,48 0,1884 0,87 0,3078 1,26 0,3962 0,10 0,0398 0,49 0,1879 0,88 0,3106 1,27 0,3980 0,11 0,0438 0,50 0,1915 0,89 0,3133 1,28 0,3839 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082	0,05	0,0199		0,1700		0,2967		0,3883
0.08 0.0319 0.47 0.1808 0.86 0.3051 1,25 0,3944 0.09 0.0359 0.48 0.1884 0.87 0.3078 1,26 0.3962 0,10 0.0398 0.49 0.1879 0.88 0.3106 1,27 0.3980 0,11 0.0438 0.50 0.1915 0.89 0.3133 1,28 0.3839 0,12 0.0478 0.51 0.1950 0.90 0.3159 1,29 0.4015 0,13 0.0517 0.52 0.1985 0.91 0.3186 1,30 0.4032 0,14 0.0557 0.53 0.2019 0.92 0.3212 1,31 0,4049 0,15 0.0596 0.54 0.2954 0.93 0.3238 1,32 0,4066 0,16 0.0636 0.55 0.2088 0.94 0,3264 1,33 0,4082 0,17 0.0675 0.56 0.2123 0.95 0,3289 1,34 0,4099	0,06	0,0239		0,1736		0,2995		0,3907
0,09 0,0359 0,48 0,1884 0,87 0,3078 1,26 0,3962 0,10 0,0398 0,49 0,1879 0,88 0,3106 1,27 0,3980 0,11 0,0438 0,50 0,1915 0,89 0,3133 1,28 0,3839 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115	0,07		,					
0,10 0,0398 0,49 0,1879 0,88 0,3106 1,27 0,3980 0,11 0,0438 0,50 0,1915 0,89 0,3133 1,28 0,3839 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131	0,08	0,0319	0,47	0,1808	0,86	0,3051	1,25	0,3944
0,11 0,0438 0,50 0,1915 0,89 0,3133 1,28 0,3839 0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147	0,09	0,0359	0,48	0,1884	0,87	0,3078	1,26	0,3962
0,12 0,0478 0,51 0,1950 0,90 0,3159 1,29 0,4015 0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162	0,10	0,0398	0,49	0,1879	0,88	0,3106	1,27	0,3980
0,13 0,0517 0,52 0,1985 0,91 0,3186 1,30 0,4032 0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177	0,11	0,0438	0,50	0,1915	0,89	0,3133	1,28	0,3839
0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3488 1,40 0,4192	0,12	0,0478	0,51	0,1950	0,90	0,3159	1,29	0,4015
0,14 0,0557 0,53 0,2019 0,92 0,3212 1,31 0,4049 0,15 0,0596 0,54 0,2954 0,93 0,3238 1,32 0,4066 0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3488 1,40 0,4192	0,13	0,0517	0,52	0,1985	0,91	0,3186	1,30	0,4032
0,16 0,0636 0,55 0,2088 0,94 0,3264 1,33 0,4082 0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222	0,14	0,0557	0,53	0,2019	0,92	0,3212		0,4049
0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236	0,15	0,0596	0,54	0,2954	0,93	0,3238	1,32	0,4066
0,17 0,0675 0,56 0,2123 0,95 0,3289 1,34 0,4099 0,18 0,0714 0,57 0,2157 0,96 0,3315 1,35 0,4115 0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236	0,16	0,0636	0,55	0,2088	0,94	0,3264	1,33	0,4082
0,19 0,0753 0,58 0,2190 0,97 0,3340 1,36 0,4131 0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265	0,17	0,0675	0,56	0,2123	0,95	0,3289		0,4099
0,20 0,0793 0,59 0,2224 0,98 0,3365 1,37 0,4147 0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279	0,18	0,0714	0,57	0,2157	0,96	0,3315	1,35	0,4115
0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292	0,19	0,0753	0,58	0,2190	0,97	0,3340	1,36	0,4131
0,21 0,0832 0,60 0,2257 0,99 0,3389 1,38 0,4162 0,22 0,0871 0,61 0,2291 1,00 0,3413 1,39 0,4177 0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292	0,20	0,0793	0,59	0,2224	0,98	0,3365	1,37	0,4147
0,23 0,0910 0,62 0,2324 1,01 0,3438 1,40 0,4192 0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313	0,21	0,0832	0,60	0,2257	0,99		1,38	0,4162
0,24 0,0948 0,63 0,2357 1,02 0,3461 1,41 0,4207 0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332	0,22	0,0871	0,61	0,2291	1,00	0,3413	1,39	0,4177
0,25 0,0987 0,64 0,2389 1,03 0,3485 1,42 0,4222 0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335	0,23	0,0910	0,62	0,2324	1,01	0,3438	1,40	0,4192
0,26 0,1026 0,65 0,2422 1,04 0,3508 1,43 0,4236 0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357	0,24	0,0948	0,63	0,2357	1,02	0,3461	1,41	0,4207
0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370	0,25	0,0987	0,64	0,2389	1,03	0,3485	1,42	0,4222
0,27 0,1064 0,66 0,2454 1,05 0,3531 1,44 0,4251 0,28 0,1103 0,67 0,2486 1,06 0,3554 1,45 0,4265 0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370	0,26	0,1026	0,65	0,2422	1,04	0,3508	1,43	0,4236
0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382		0,1064			1,05		1,44	
0,29 0,1141 0,68 0,2517 1,07 0,3577 1,46 0,4279 0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382	0,28	0,1103	0,67	0,2486	1,06	0,3554	1,45	0,4265
0,30 0,1179 0,69 0,2549 1,08 0,3599 1,47 0,4292 0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382	0,29	0,1141	0,68	0,2517		0,3577	1,46	0,4279
0,31 0,1217 0,70 0,2580 1,09 0,3621 1,48 0,4306 0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382						_		_
0,32 0,1255 0,71 0,2611 1,10 0,3643 1,49 0,4313 0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382	0,31	0,1217		0,2580		0,3621	1,48	0,4306
0,33 0,1293 0,72 0,2642 1,11 0,3665 1,50 0,4332 0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382								
0,34 0,1331 0,73 0,2673 1,12 0,3686 1,51 0,4335 0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382								
0,35 0,1368 0,74 0,2703 1,13 0,3708 1,52 0,4357 0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382								
0,36 0,1406 0,75 0,2734 1,14 0,3729 1,53 0,4370 0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382								
0,37 0,1443 0,76 0,2764 1,15 0,3749 1,54 0,4382								
	0,38	0,1480	0,77	0,2794	1,16	0,3770	1,55	0,4394

Продолжение прил. 2

x	$\Phi(x)$	x	$\Phi(x)$	X	$\Phi(x)$	х	$\Phi(x)$
1,56	0,4406	1,82	0,4656	2,16	0,4846	2,68	0,4963
1,57	0,4418	1,83	0,4664	2,18	0,4854	2,70	0,4965
1,58	0,4429	1,84	0,4671	2,20	0,4861	2,72	0,4967
1,59	0,4441	1,85	0,4678	2,22	0,4868	2,74	0,4969
1,60	0,4452	1,86	0,4686	2,24	0,4875	2,76	0,4971
1,61	0,4463	1,87	0,4693	2,26	0,4881	2,78	0,4973
1,62	0,4474	1,88	0,4699	2,28	0,4887	2,80	0,4974
1,63	0,4484	1,89	0,4706	2,30	0,4893	2,82	0,4976
1,64	0,4495	1,90	0,4713	2,32	0,4898	2,84	0,4977
1,65	0,4505	1,91	0,4719	2,34	0,4904	2,86	0,4979
1,66	0,4515	1,92	0,4726	2,36	0,4909	2,88	0,4980
1,67	0,4525	1,93	0,4732	2,38	0,4913	2,90	0,4981
1,68	0,4535	1,94	0,4738	2,40	0,4918	2,92	0,4982
1,69	0,4545	1,95	0,4744	2,42	0,4922	2,94	0,4984
1,70	0,4554	1,96	0,4750	2,44	0,4927	2,96	0,4985
1,71	0,4564	1,97	0,4756	2,46	0,4931	2,98	0,4986
1,72	0,4573	1,98	0,4761	2,48	0,4934	3,00	0,49865
1,73	0,4582	1,99	0,4767	2,50	0,4938	3,20	0,49931
1,74	0,4591	2,00	0,4772	2,52	0,4941	3,40	0,49966
1,75	0,4599	2,02	0,4783	2,54	0,4945	3,60	0,499841
1,76	0,4608	2,04	0,4793	2,56	0,4948	3,80	0,499928
1,77	0,4616	2,06	0,4803	2,58	0,4951	4,00	0,499968
1,78	0,4625	2,08	0,4812	2,60	0,4953	4,50	0,499997
1,79	0,4633	2,10	0,4821	2,62	0,4956	5,00	0,499999
1,80	0,4641	2,12	0,4830	2,64	0,4959		
1,81	0,4649	2,14	0,4838	2,66	0,4961		

Приложение 3

Значения функции $\frac{\lambda^k}{k!}e^{-\lambda}$

k	λ								
	0,1	0,2	0,3	0,4	0,5	0,6			
1	2	3	4	5	6	7			
0	0,9048	0,8187	0,7408	0,6703	0,6065	0,5488			
1	0,0905	0,1638	0,2222	0,2681	0,3033	0,3293			
2	0,0045	0,0164	0,0333	0,0536	0,0758	0,0988			
3	0,0002	0,0011	0,0033	0,0072	0,0126	0,0198			
4		0,0001	0,0002	0,0007	0,0016	0,0030			
5				0,0001	0,0002	0,0004			

Продолжение прил. 3

k	λ								
K	0,7	0,8	0,9	1, 0	2,0	3,0			
1	8	9	10	11	12	13			
0	0,4966	0,4493	0,4066	0,3679	0,1353	0,0498			
1	0,3476	0,3595	0,3659	0,3679	0,2707	0,1494			
2	0,1217	0,1438	0,1647	0,1839	0,2707	0,2240			
3	0,0284	0,0383	0,0494	0,0613	0,1804	0,2240			
4	0,0050	0,0077	0,0111	0,0153	0,0902	0,1680			
5	0,0007	0,0012	0,0020	0,0031	0,0361	0,10008			
6	0,0001	0,0002	0,0003	0,0005	0,0120	0,0504			
7				0,0001	0,0034	0,0216			
8					0,0009	0,0081			
9					0,0002	0,0027			
10						0,0008			
11						0,0002			
12						0,0001			

Окончание прил. 3

_	λ								
k	4,0	5,0	6,0	7, 0	8,0	9,0			
1	14	15	16	17	18	19			
0	0,0183	0,0067	0,0025	0,0009	0,0003	0,0001			
1	0,0733	0,0337	0,0149	0,0064	0,0027	0,0011			
2	0,1465	0,0842	0,0446	0,0223	0,0107	0,0050			
3	0,1954	0,1404	0,0892	0,0521	0,0286	0,0150			
4	0,1954	0,1755	0,1339	0,0912	0,0572	0,0337			
5	0,1563	0,1755	0,1606	0,1277	0,0916	0,0607			
6	0,1042	0,1462	0,1606	0,1490	0,1221	0,0911			
7	0,0595	0,1044	0,1377	0,1490	0,1396	0,1171			
8	0,0298	0,0653	0,1033	0,1304	0,1396	0,1318			
9	0,0132	0,0363	0,0688	0,1014	0,1241	0,1318			
10	0,0053	0,0181	0,0413	0,0710	0,0993	0,1186			
11	0,0019	0,0082	0,0225	0,0452	0,0722	0,0970			
12	0,0006	0,0034	0,0113	0,0264	0,0481	0,0728			
13	0,0002	0,0013	0,0052	0,0142	0,0296	0,0504			
14	0,0001	0,0005	0,0022	0,0071	0,0169	0,0324			
15		0,0002	0,0009	0,0033	0,0090	0,0194			
16		0,0001	0,0003	0,0015	0,0045	0,0109			
17			0,0001	0,0006	0,0021	0,0058			